Research Article
BibTex RIS Cite

Risk Analysis and Evaluation in The Airline Industry, Technologies for Detecting and Responding to CBRN Threats in Aircraft, and New Concepts in Transportation

Year 2024, Volume: 2 Issue: 2, 84 - 97, 01.12.2024

Abstract

The article addresses the dynamics of the global aviation sector and specifically the integration of detection and response technologies developed against Chemical, Biological, Radiological, and Nuclear (CBRN) threats. The aviation industry plays a vital role in the global economy by facilitating the international travel of millions of people and tons of cargo. Therefore, security protocols and risk management strategies in the sector are of great importance, especially against high-risk CBRN threats. The article examines how CBRN threat detection and response systems are integrated into aircraft and the research conducted to enhance the effectiveness of these technologies. Advanced detection technologies and response mechanisms enable early threat detection and rapid intervention, while the challenges posed by these systems in terms of cost, weight, and operational efficiency are also discussed. Technical and operational challenges, such as minimizing false alarms and integrating the systems into the avionics structure, are among the main obstacles the sector faces in adopting these technologies. Additionally, the article discusses how advanced technologies such as artificial intelligence and machine learning can be used to improve the accuracy and operational compatibility of detection and response systems. Strengthening training programs and providing flight crews with in-depth knowledge about these technologies are crucial for quick and effective response in potential CBRN incidents. In conclusion, the aviation sector must continually develop and optimize the integration of technologies that provide high-level security against CBRN threats. These efforts will significantly enhance aviation security and contribute to making global transportation operations safer.

References

  • [1] Belobaba, P., Odoni, A., & Barnhart, C. (2009). The global airline industry (2nd ed.). Wiley Publishers.
  • [2] Markovskaya, E., Smolina, E. G., Merzlikin, I., & Pryadko, I. (2023). Risk modeling in the aviation industry as a factor of sustainable development. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202338102008
  • [3] Wing, A. K., & Cloutier, R. (2023). Risks in change: A review of risks facing the aviation industry and a method of examining impacts. https://doi.org/10.2514/6.2023-1114
  • [4] Rabajczyk, A., Zboina, J., Zielecka, M., & Fellner, R. (2020). Monitoring of selected CBRN threats in the air in industrial areas with the use of unmanned aerial vehicles. Atmosphere, 11(12), 1373. https://doi.org/10.3390/atmos11121373
  • [5] Demir, A. (2021). Havalimanı personelinin KBRN olaylarına karşı hazırlık algıları ve bilgi düzeylerinin belirlenmesi: Erzurum ili örneği [Yüksek lisans tezi]. Yök Tez veri tabanından erişildi (Tez no: 698289).
  • [6] Hellenberg, T., & Visuri, P. (2011). Overview of the European Union crisis coordination arrangements: Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [7] Normark, M. (2011). Understanding CBRN terrorism threat: An overall assessment. Aleksanteri Institute, University of Helsinki.
  • [8] Rautjärvi, J., Valkonen, M., & Annanmäki, M. (2011). Threat of nuclear and radiological terrorism to air transport. Aleksanteri Institute, University of Helsinki.
  • [9] Rautjärvi, J., Valkonen, M., & Annanmäki, M. (2011). Prevention measures and consequence management of radiological threats. Aleksanteri Institute, University of Helsinki.
  • [10] Visuri, P., & Hellenberg, T. (2011). Finnish crisis management: A case securing of air passenger transports against CBRN terrorism. Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [11] Cohen, A. A. (2011). U.S. homeland security policy approaches to defenses against airline terrorism: Prevention of a CBRN attack. Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [12] Silvennoinen, H., Lairio, T., & Jalasvirta, P. (2011). Patient handling: Decontamination of CBRN situations: Description of the process. Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [13] Kleinn, J. (2022). Characteristics of risk. https://doi.org/10.1007/978-3-031-08568-0_2
  • [14] Ustaömer, T. C., & Şengür, F. (2020). Havacılıkta emniyet kültürü: Reason’ın emniyet kültürü modelinin incelenmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(1), 95-104. https://doi.org/10.18506/anemon.520721
  • [15] Sivil Havacılık Genel Müdürlüğü. (2024). SHY-SMS. http://web.shgm.gov.tr/doc4/SHY-SMS.pdf (Erişim Tarihi: 11.09.2024)
  • [16] Federal Aviation Administration. (2024). General aviation safety. https://www.faa.gov/newsroom/general-aviation-safety (Erişim Tarihi: 11.09.2024)
  • [17] Sivil Havacılık Genel Müdürlüğü. (2024). SHY-SMS. http://web.shgm.gov.tr/doc4/SHY-SMS.pdf (Erişim Tarihi: 11.09.2024)
  • [18] International Civil Aviation Organization. (2017). ICAO annex 17: Security. Pilot18. https://www.pilot18.com/wp-content/uploads/2017/10/Pilot18.com-ICAO-Annex-17-Security.pdf
  • [19] Finkelstein, R., & Ayyub, B. M. (t.y.). Memetics for threat reduction in risk management. In Wiley handbook of science and technology and homeland security (pp. 301-308). John Wiley & Sons.
  • [20] Matsika, E., O’Neill, C., Battista, U., Khosravi, M., Laporte, A. de S., & Munoz, E. (2016). Development of risk assessment specifications for analysing terrorist attacks vulnerability on metro and light rail systems. Transportation Research Procedia, 14, 1345-1354. https://doi.org/10.1016/j.trpro.2016.05.207
  • [21] Kurnaz, S., & Sunar, O. (2015, Ekim 23-24). Havacılıkta risk yönetimi: Türk sivil havacılık sistemi açısından bir değerlendirme. III. Ulusal Havacılık Teknolojisi ve Uygulamaları Kongresi (UHAT-2015), İzmir, Türkiye.
  • [22] Dana, A. S. (2004). Terrorism: Background on chemical, biological, and toxin weapons and options for lessening their impact.
  • [23] Ivančík, R., Nečas, P., & Lancik, B. (2023). On unmanned aircraft as a security threat. INCAS Bulletin, 15(1), 121-132. https://doi.org/10.13111/2066-8201.2023.15.1.11
  • [24] Sovetov, B. Y., Tatarnikova, T. M., & Cehanovsky, V. V. (2019). Detection system for threats of the presence of hazardous substances in the environment. IEEE Systems Conference, https://doi.org/10.1109/SCM.2019.8903771
  • [25] Öztürk, O., & Taştan, M. (2024). 2015-2021 yılları arasında muğla ilinde lto döngüsü esnasında b737-800 ve a320 tip uçaklardan kaynaklanan emisyonun gerçek zamanlı hesaplanması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(1), 20-33.
  • [26] Yıldız, M. (2021). Electric Energy Use in Aviation, Perspective and Applications. Politeknik Dergisi, 24(4), 1605-1610. https://doi.org/10.2339/politeknik.852272
  • [27] Öztürk, O., & Göktepe, H. (2024). Modern Havacılık Sektöründe Alternatif Enerji Kaynakları: Sürdürülebilirlik Hedeflerine Doğru Adımlar. Journal of Aerospace Science and Management, 2(1), 21-42.
  • [28] Saito, M., Uchida, N., Furutani, S., Murahashi, M., Espulgar, W., Nagatani, N., Nagai, H., Inoue, Y., Ikeuchi, T., Kondo, S., Uzawa, H., Seto, Y., & Tamiya, E. (2018). Field-deployable rapid multiple biosensing system for detection of chemical and biological warfare agents. Microsystems & Nanoengineering, 4(1), 1-11. https://doi.org/10.1038/MICRONANO.2017.83
  • [29] Hook, L. R., Ryan, W., Skoog, M. A., & Fuller, J. (2023). Exploring the potential of automatic safety systems in general aviation. 2023 IEEE Aerospace Conference, Big Sky, MT, USA. https://doi.org/10.1109/AERO55745.2023.10115864
  • [30] De Breuker, R., Mkhoyan, T., Nakash, N., Stuber, V. L., Wang, X., Mkhoyan, I., Groves, R. M., van der Zwaag, S., & Sodja, J. (2022). Overview of the SmartX wing technology integrator. Actuators. https://doi.org/10.3390/act11100302
  • [31] Leung, Y. K. (2023). A silent threat: Exploring the impact of endocrine disruption on human health. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms24129790
  • [32] Parihar, J. K. S., & Parihar, A. K. S. (2023). Ocular manifestations and management strategies in CBRN warfare. In S. Waikar (Ed.), Ocular trauma in armed conflicts (pp. 323-335). Springer. https://doi.org/10.1007/978-981-19-4021-7_19
  • [33] Lancaster, G., & Herrmann, J. W. (2021). Computer simulation of the effectiveness of novel cardiac arrest response systems. Resuscitation Plus, https://doi.org/10.1016/J.RESPLU.2021.100153

Uçaklarda KBRN Tehditleri Algılama ve Müdahale Teknolojileri ve Taşımacılıktaki Yeni Konseptler: Havayolu Endüstrisinde Risk Analizi ve Değerlendirmesi

Year 2024, Volume: 2 Issue: 2, 84 - 97, 01.12.2024

Abstract

Makale, global havacılık sektörünün dinamiklerini ve özellikle Kimyasal, Biyolojik, Radyolojik ve Nükleer (KBRN) tehditlere karşı geliştirilen algılama ve müdahale teknolojilerinin entegrasyonunu ele almaktadır. Havacılık endüstrisi, milyonlarca insan ve tonlarca yükün uluslararası seyahatini sağlayarak küresel ekonomi için hayati bir rol oynamaktadır. Bu nedenle, sektördeki güvenlik protokolleri ve risk yönetimi stratejileri, özellikle yüksek risk taşıyan KBRN tehditlerine karşı büyük önem taşımaktadır. Makale, KBRN tehdit algılama ve müdahale sistemlerinin uçaklarda nasıl entegre edildiğini ve bu teknolojilerin etkinliğini artırmak için yapılan araştırmaları inceler. Gelişmiş algılama teknolojileri ve müdahale mekanizmaları, tehditleri erkenden tespit etmeye ve hızlı müdahalede bulunmaya olanak tanırken, bu sistemlerin maliyet, ağırlık ve operasyonel verimlilik açısından getirdiği zorluklar da tartışılmaktadır. Özellikle, yanlış alarmların minimize edilmesi ve sistemlerin aviyonik yapıya entegrasyonu gibi teknik ve operasyonel zorluklar, sektörün bu teknolojileri benimseme sürecinde karşılaştığı başlıca engeller arasında yer almaktadır. Ayrıca, makale, yapay zekâ ve makine öğrenimi gibi ileri teknolojilerin, algılama ve müdahale sistemlerinin doğruluğunu ve operasyonel uyumluluğunu artırmak için nasıl kullanılabileceğini tartışmaktadır. Eğitim programlarının güçlendirilmesi ve uçuş ekiplerine bu teknolojiler hakkında derinlemesine bilgi sağlanması, olası KBRN olaylarında hızlı ve etkili müdahale için kritik öneme sahiptir. Sonuç olarak, havacılık sektörü, KBRN tehditleriyle mücadelede yüksek düzeyde güvenlik sağlayan teknolojilerin entegrasyonunu sürekli geliştirmeli ve optimize etmelidir. Bu çabalar, havacılık güvenliğini önemli ölçüde artıracak ve global taşımacılık operasyonlarının daha güvenli hale gelmesine yardımcı olacaktır.

References

  • [1] Belobaba, P., Odoni, A., & Barnhart, C. (2009). The global airline industry (2nd ed.). Wiley Publishers.
  • [2] Markovskaya, E., Smolina, E. G., Merzlikin, I., & Pryadko, I. (2023). Risk modeling in the aviation industry as a factor of sustainable development. E3S Web of Conferences. https://doi.org/10.1051/e3sconf/202338102008
  • [3] Wing, A. K., & Cloutier, R. (2023). Risks in change: A review of risks facing the aviation industry and a method of examining impacts. https://doi.org/10.2514/6.2023-1114
  • [4] Rabajczyk, A., Zboina, J., Zielecka, M., & Fellner, R. (2020). Monitoring of selected CBRN threats in the air in industrial areas with the use of unmanned aerial vehicles. Atmosphere, 11(12), 1373. https://doi.org/10.3390/atmos11121373
  • [5] Demir, A. (2021). Havalimanı personelinin KBRN olaylarına karşı hazırlık algıları ve bilgi düzeylerinin belirlenmesi: Erzurum ili örneği [Yüksek lisans tezi]. Yök Tez veri tabanından erişildi (Tez no: 698289).
  • [6] Hellenberg, T., & Visuri, P. (2011). Overview of the European Union crisis coordination arrangements: Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [7] Normark, M. (2011). Understanding CBRN terrorism threat: An overall assessment. Aleksanteri Institute, University of Helsinki.
  • [8] Rautjärvi, J., Valkonen, M., & Annanmäki, M. (2011). Threat of nuclear and radiological terrorism to air transport. Aleksanteri Institute, University of Helsinki.
  • [9] Rautjärvi, J., Valkonen, M., & Annanmäki, M. (2011). Prevention measures and consequence management of radiological threats. Aleksanteri Institute, University of Helsinki.
  • [10] Visuri, P., & Hellenberg, T. (2011). Finnish crisis management: A case securing of air passenger transports against CBRN terrorism. Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [11] Cohen, A. A. (2011). U.S. homeland security policy approaches to defenses against airline terrorism: Prevention of a CBRN attack. Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [12] Silvennoinen, H., Lairio, T., & Jalasvirta, P. (2011). Patient handling: Decontamination of CBRN situations: Description of the process. Securing air traffic. Aleksanteri Institute, University of Helsinki.
  • [13] Kleinn, J. (2022). Characteristics of risk. https://doi.org/10.1007/978-3-031-08568-0_2
  • [14] Ustaömer, T. C., & Şengür, F. (2020). Havacılıkta emniyet kültürü: Reason’ın emniyet kültürü modelinin incelenmesi. Anemon Muş Alparslan Üniversitesi Sosyal Bilimler Dergisi, 8(1), 95-104. https://doi.org/10.18506/anemon.520721
  • [15] Sivil Havacılık Genel Müdürlüğü. (2024). SHY-SMS. http://web.shgm.gov.tr/doc4/SHY-SMS.pdf (Erişim Tarihi: 11.09.2024)
  • [16] Federal Aviation Administration. (2024). General aviation safety. https://www.faa.gov/newsroom/general-aviation-safety (Erişim Tarihi: 11.09.2024)
  • [17] Sivil Havacılık Genel Müdürlüğü. (2024). SHY-SMS. http://web.shgm.gov.tr/doc4/SHY-SMS.pdf (Erişim Tarihi: 11.09.2024)
  • [18] International Civil Aviation Organization. (2017). ICAO annex 17: Security. Pilot18. https://www.pilot18.com/wp-content/uploads/2017/10/Pilot18.com-ICAO-Annex-17-Security.pdf
  • [19] Finkelstein, R., & Ayyub, B. M. (t.y.). Memetics for threat reduction in risk management. In Wiley handbook of science and technology and homeland security (pp. 301-308). John Wiley & Sons.
  • [20] Matsika, E., O’Neill, C., Battista, U., Khosravi, M., Laporte, A. de S., & Munoz, E. (2016). Development of risk assessment specifications for analysing terrorist attacks vulnerability on metro and light rail systems. Transportation Research Procedia, 14, 1345-1354. https://doi.org/10.1016/j.trpro.2016.05.207
  • [21] Kurnaz, S., & Sunar, O. (2015, Ekim 23-24). Havacılıkta risk yönetimi: Türk sivil havacılık sistemi açısından bir değerlendirme. III. Ulusal Havacılık Teknolojisi ve Uygulamaları Kongresi (UHAT-2015), İzmir, Türkiye.
  • [22] Dana, A. S. (2004). Terrorism: Background on chemical, biological, and toxin weapons and options for lessening their impact.
  • [23] Ivančík, R., Nečas, P., & Lancik, B. (2023). On unmanned aircraft as a security threat. INCAS Bulletin, 15(1), 121-132. https://doi.org/10.13111/2066-8201.2023.15.1.11
  • [24] Sovetov, B. Y., Tatarnikova, T. M., & Cehanovsky, V. V. (2019). Detection system for threats of the presence of hazardous substances in the environment. IEEE Systems Conference, https://doi.org/10.1109/SCM.2019.8903771
  • [25] Öztürk, O., & Taştan, M. (2024). 2015-2021 yılları arasında muğla ilinde lto döngüsü esnasında b737-800 ve a320 tip uçaklardan kaynaklanan emisyonun gerçek zamanlı hesaplanması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(1), 20-33.
  • [26] Yıldız, M. (2021). Electric Energy Use in Aviation, Perspective and Applications. Politeknik Dergisi, 24(4), 1605-1610. https://doi.org/10.2339/politeknik.852272
  • [27] Öztürk, O., & Göktepe, H. (2024). Modern Havacılık Sektöründe Alternatif Enerji Kaynakları: Sürdürülebilirlik Hedeflerine Doğru Adımlar. Journal of Aerospace Science and Management, 2(1), 21-42.
  • [28] Saito, M., Uchida, N., Furutani, S., Murahashi, M., Espulgar, W., Nagatani, N., Nagai, H., Inoue, Y., Ikeuchi, T., Kondo, S., Uzawa, H., Seto, Y., & Tamiya, E. (2018). Field-deployable rapid multiple biosensing system for detection of chemical and biological warfare agents. Microsystems & Nanoengineering, 4(1), 1-11. https://doi.org/10.1038/MICRONANO.2017.83
  • [29] Hook, L. R., Ryan, W., Skoog, M. A., & Fuller, J. (2023). Exploring the potential of automatic safety systems in general aviation. 2023 IEEE Aerospace Conference, Big Sky, MT, USA. https://doi.org/10.1109/AERO55745.2023.10115864
  • [30] De Breuker, R., Mkhoyan, T., Nakash, N., Stuber, V. L., Wang, X., Mkhoyan, I., Groves, R. M., van der Zwaag, S., & Sodja, J. (2022). Overview of the SmartX wing technology integrator. Actuators. https://doi.org/10.3390/act11100302
  • [31] Leung, Y. K. (2023). A silent threat: Exploring the impact of endocrine disruption on human health. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms24129790
  • [32] Parihar, J. K. S., & Parihar, A. K. S. (2023). Ocular manifestations and management strategies in CBRN warfare. In S. Waikar (Ed.), Ocular trauma in armed conflicts (pp. 323-335). Springer. https://doi.org/10.1007/978-981-19-4021-7_19
  • [33] Lancaster, G., & Herrmann, J. W. (2021). Computer simulation of the effectiveness of novel cardiac arrest response systems. Resuscitation Plus, https://doi.org/10.1016/J.RESPLU.2021.100153
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Air-Space Transportation
Journal Section Research Article
Authors

Halil Sarıaslan 0009-0005-8960-5448

Early Pub Date October 23, 2024
Publication Date December 1, 2024
Submission Date September 13, 2024
Acceptance Date October 16, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA Sarıaslan, H. (2024). Uçaklarda KBRN Tehditleri Algılama ve Müdahale Teknolojileri ve Taşımacılıktaki Yeni Konseptler: Havayolu Endüstrisinde Risk Analizi ve Değerlendirmesi. Journal of Aerospace Science and Management, 2(2), 84-97.

ERÜ Havacılık ve Uzay Bilimleri Fakültesi Dergisi 2021 | jasam@erciyes.edu.tr

Bu eser Creative Commons Atıf-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.