Research Article
BibTex RIS Cite

Uzay Araştırmaları İçin Doğa İlhamlı Robotik

Year 2021, Volume: 1 Issue: 2, 64 - 77, 25.02.2021

Abstract

Biomimicry is an alternative approach to solve problems people may encounter in all walks of life by mimicking and being inspired by nature. Robotics and space research are of utmost importance for modern researchers. When it comes to robotics design for space environments, it is seen that the ones usually preferred for space research are mostly inspired by living beings on Earth. Bio-inspired robotic technology is being developed by studying the mechanics of living beings having been seen in our world for 3.8 billion years. The locomotion, balance, behaviour, and communication skills of terrestrial beings have thus been thoroughly studied by engineers and social scientists for decades. Undoubtedly, robotics has also made use of the systems already existing in nature like many other scientific fields and thus considered the studies in biomechanics noteworthy. When we carefully examine our ecosystem, we realize that answers to our questions and solutions to our problems are just there on the shelves of a 3.8-billion-year-old laboratory with complete background on observation and application. So far, man has been quite successful in getting data by studying a splendid variety of species as well as making use of such data to put forward solutions to terrestrial problems. In this study, it has been examined how living beings in our ecosystem can be a source of inspiration for the robotic studies in space research as well as how our knowledge of biology can be put into use in robotics so that it can contribute to space studies. The study also aims to enlighten the way biology works in the areas of design for science and technology.

References

  • Akkaya, B. and Yazıcı, AM. (2020). Comparing Agile Leadeship with Biomimicry-Based Gray Wolf: Proposing A New Model. Business&Management Studies: An International Journal, Vol.8, Issue.2, 1455-1478.
  • Altun, Ş. (2011). Doğanın İnovasyonu- İnovasyon İçin Doğadan İlham Al, Elma Yayınevi.
  • Avcı, F. (2019). Doğa ve İnovasyon: Okullarda Biyomimikri. Anadolu Öğretmen Dergisi, Cilt:3, Sayı:2, DOI:10.35346/aod.604872.
  • Arienti, A. Calisti, M. Serchi, F. G. and Laschi, C. (2013). PoseiDRONE: Design of a soft-bodied ROV with crawling, swimming and manipulation ability. OCEANS 2013 MTS/IEEE – San Diego: An Ocean in Common.
  • Bar-Cohen, Y. (2006). Biomimetics: biologically inspired technology. II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS. C. A. Mota Soares et all. (Eds.) Lisbon. Portugal. July 18-21.
  • Benyus, JM. (1997). Biomimicry. New York: William Morrow.
  • Birkmeyer, P. Peterson, K. and Fearing, RS. (2009). DASH: A dynamic 16g hexapedal robot. RSJ International Conference on Intelligent Robots and Systems IEEE. 2683- 2689. 10.1109/IROS. 2009. 5354561
  • Cianchetti, M. Calisti, M. Margheri, L. Kuba, M. and Laschi, C. (2015). Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot. Bioinspiration&Biomimetics, 10(3), DOI:10.1088/1748-3190/10/3/035003.
  • Eliakim, I. Cohen, Z. Kosa, G. and Yovel, Y. (2018). A fully autonomous terrestrial bat-like acoustic robot, PLoS Computational Biology, 14(9): e1006406, https://doi.org/10.1371/journal.pcbi.1006406 Accessed: September. 27,2020.
  • ESA. (2019). Dark meets light on Mars, Retrieved from https://www.esa.int/About_Us/ESAC/Dark_meets_light_on_Mars Accessed: September. 25,2020.
  • Fras, J. Noh, Y. Marcias, M. Wurdemann, H. and Althoefer, K. (2018). Bio-Inspired Octopus Robot Based on Novel Soft Fluidic Actuator. IEEE International Conference on Robotics and Automation. Volume:2018. DOI:10.1109/ICRA.2018.8460629.
  • Frishberg, M. (2015). What Would Nature Do? The Rise of Biomimicry. Research-Technology Management, Vol.58, Vol.6.
  • Ginsberg, M. Schiano, J. Kramer, M. and Alleyne, M. (2013). A Case Study in Bio-Inspired Engineering Design: Defense Applications of Exoskeletal Sensors. Defense & Security Analysis, 29 (2), 156-169.
  • Hassanalion, M. Pirinç, D. and Abdelkefi, A. (2018). Evolution of space drones for planetary exploration: A review. Progress in Aerospace Sciences, 97:61-105. DOI:10.1016/j.paerosci.2018.01.003.
  • Ijspeert, A. Crespi, A. Ryczko, D. and Cabelguen, J. (2007). From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science, 315(5817), 1416-1420. Retrieved October 7, 2020, from http://www.jstor.org/stable/20035751
  • İnner, S. (2019). Biyomimikri ve Parametrik Tasarım İlişkisinin Mimari Alanında Kullanımı ve Gelişimi. Tasarım Enformatiği, Volume 1, Issue 1, 15-29.
  • Jiang, H. Hawkes, E. Fuller, C. Estrada, M. Suresh, S. Abcouwer, N. Han, A. Wang, S. Ploch, C. Parness, A. and Cutkosky, M. (2017). A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2(7): eaan4545. DOI: 10.1126/scirobotics.aan4545.
  • Kennedy, E. Fecheyr- Lippens, D. Hsiung, B. Niewiarowski, PH. and Kolodziej, M. (2015). Biomimicry: A Path to Sustainable Innovation. Massachusetts Institute of Technology Design, Volume 31, Number 3. doi:10.1162/DESI_a_00339.
  • Kim, J. and Park, K. (2018). The Design Characteristics of Nature-inspired Buildings. Civil Engineering and Architecture, 6 (2). 88-107. DOI: 10.13189/cea.2018.060206.
  • Kang, C. (2018). Marsbee - Swarm of Flapping Wing Flyers for Enhanced Mars Exploration, NASA. Retrieved from https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration/. Accessed: 29.08.2020.
  • Knight, W. (2017). An Ostrich-Like Robot Pushes the Limit of Legged Locomotion, MIT Technology Review. Retrieved from. https://www.technologyreview.com/2017/05/02/152048/an-ostrich-like-robot-pushes-the-limits-of-legged-locomotion/. Accessed: 28.08.2020.
  • Launius, R. (2019). Reaching for the Moon: A Short History of the Space Race. New Haven; London: Yale University Press. Retrieved October 7, 2020, from http://www.jstor.org/stable/j.ctvhrcxzx
  • Lee, W. Falk, B. Chiu, C. Krishnan, A. Arbour, JH. and Moss, CF. (2017). Tongue-driven sonar beam steering by a lingual-echolocating fruit bat. PLOS Biology. Retrieved from https://doi.org/10.1371/journal.pbio.2003148 . Accessed: 25.09.2020
  • Lentink, D. (2014). Bioinspired flight control. Bioinspiration&Biomimetics, 9, 020302, (8pp). doi:10.1088/1748-31-82/9/2/020301.
  • Lemburg, J. Fernandez, J. Eich, M. and Mronga, D. (2011, May). AILA- design of an autonomous mobile dual-arm robot, Paper presented at Proceedings- IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9-13 May, 2011. DOI:10.1109/ICRA.2011.5979775
  • Liljebäck, P. Pettersen, KY. Stavdahl, Ø. and Gravdahl, JT. (2012). Snake Robot Locomotion in Environments with Obstacles. IEEE Transactions on Mechatronics, 17 (6): 1158-1169. DOI:10.1109/TMECH.2011.2159863.
  • Mahon, C. (2018). Robot Cockroaches May Be the Future of Space Exploration, Outer Places. Retrieved from. https://www.outerplaces.com/science/item/17800-robot-cockroachs-space-exploration. Access date: 29.08.2020.
  • Marshall, A. and Lozeva, S. (2009). Questioning the Theory and Practice of Biomimicry. Int. J. of Design&Nature and Ecodynamics, Vol.4, No.1, 1-10. DOI:10.2495/DNE-V4-N1-1-10.
  • Mattar, E. (2013). A Survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation. Robotics and Autonomous Systems, Vol.61, No.5, May, pp.517-544.
  • Menon, C. Murphy, M. and Sitti, M. (2004). Gecko Inspired Surface Climbing Robots. IEEE International Conference on Robotics and Biomimetics, 431- 436. DOI: 10.1109/ROBIO.2004.1521817
  • Menon, C. Murphy, M. Sitti, M. and Lan, N. (2007). Space exploration-towards bio-inspired climbing robots. Bioinspiration and Robotics: Walking and Climbing Robots. Book edited by: Maki K. Habib, ISBN 978-3-902613-15-8, pp.544. I-Tech. Vienna. Austria. EU. September 2007.
  • Menon, C. Broschart, M. and Lan, N. (2007). Biomimetics and robotics for space applications: challenges and emerging Technologies. IEEE International Conference on Robotics and Automation-Workshop on Biomimetic Robotics.
  • Merz, M. Transeth, AA. Johansen, G. and Bjerkeng, M. (2018). Snake Robots For Space Applications (SAROS). SINTEF. Number. 52. Retrieved from https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2565930/SINTEF%2b2017-00453.pdf?sequence=1&isAllowed=y. Access date:29.08.2020.
  • NASA/Johnson Space Center. (2003, July 2) "Humans, Robots Work Together To Test 'Spacewalk Squad' Concept.", https://www.nasa.gov/home/hqnews/2003/jul/HQ_03227_Human_Concept.html
  • NASA. (2014, April 24). A step up for NASA’s robonaut: Ready for climbing legs. https://www.nasa.gov/content/a-step-up-for-nasa-s-robonaut-ready-for-climbing-legs
  • NASA (2015, June 11) “NASA Looks to University Robotics Groups to Advance Latest Humanoid Robot” https://www.nasa.gov/feature/nasa-looks-to-university-robotics-groups-to-advance-latest-humanoid-robot
  • NASA. (2016, Sept 2). NASA counting on humanoid robots for deep space exploration, https://gameon.nasa.gov/2016/02/09/nasa-counting-on-humanoid-robots-for-deep-space-exploration/
  • NASA. (2017, April 13). NASA Missions Provide New Insights into ‘Ocean Worlds’ in Our Solar System, https://europa.nasa.gov/news/3/nasa-missions-provide-new-insights-into-ocean-worlds-in-our-solar-system/
  • NASA. (2019, December 23) Space History Is Made in This NASA Robot Factory, https://mars.nasa.gov/news/8575/space-history-is-made-in-this-nasa-robot-factory/
  • Özdoğan, E. Demir, A. and Seventekin, N. (2006). Lotus Etkili Yüzeyler. Tekstil ve Konfeksiyon Dergisi, 16(1), 287-290.
  • Primlani, RV. (2013). Biomimicry: On the Frontiers of Design. XIMB Journal, 10(2), 139-148.
  • Ramezani, A. Chung, SJ. and Hutchinson, S. (2017). A biomimetic robotic platform to study flight specializations of bats, Science Robotics, Vol.2, Issue 3, eaal2505, DOI: 10.1126/scirobotics.aal2505
  • Ribak, G. and Wiehs, D. (2011). Jumping without Using Legs: The Jump of the Click-Beetles (Elateriade) Is Morphologically Constrained, PLoS One, 6(6): e20871, doi: 10.1371/journal.pone.0020871 Accessed: October. 01, 2020.
  • Robots in space. (2004). Nature, 428, 877. https://doi.org/10.1038/428877b.
  • Rubenson, J. Llyod, DG. Heliams, DB. Besier, TF. and Fournier, PA. (2011). Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics. J. R. Soc. Interface, 8(58): 740–755. doi: 10.1098/rsif.2010.0466 ; Accessed: October 04, 2020.
  • Sanchez, CJ. Chiu, CW. Zhou, Y. González, JM. Vinson, SB. and Liang, H. (2015). Locomotion control of hybrid cockroach robots. J. R. Soc. Interface, 12: 20141363. http://dx.doi.org/10.1098/rsif.2014.1363.
  • Sockol, MD. Raichlen, DA. and Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism, Proceedings of the National Academy of Sciences, Jul 2007, 104 (30) 12265-12269; DOI: 10.1073/pnas.0703267104
  • Volstad, NL. and Boks, C. (2012). On the use of Biomimicry as a Useful Tool for the Industrial Designer. Sustainable Development, 20(3), 189-199.
  • Vuuren, LV. (2014). Biomimicry: exploring nature’s genius for a beter tomorrow. Water Whell, Volume 13, Issue 6, p.12-15.
  • Witze, A. (2017). High-jumping beetle inspires agile robots. Nature, doi:10.1038/nature.2017.22981.
  • Yazıcı, AM. and Darıcı, S. (2019). The New Opportunities in Space Economy, Journal of the Human and Social Science Researches, 8(4), 3252-3271.
  • Yazıcı, AM. (2020). Biomimicry and Agile Leadership in Industry 4.0. A. Bülent (Ed.), Agile Business Leadership Methods for Industry 4.0 içinde (s.155-170). Emerald Publishing. doi:10.1108/978-1-80043-380-920201010.
  • Yoshida, K. (2010). Achievements in space robotics. IEEE Robotics&Automation Magazine, DOI:10.1109/MRA.2009.934818.
  • Yuk, H. Lin, S. Ma, C. Takaffoli, M. Fang, NX. and Zhao, X. (2017). Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications, 8:14230. DOI:10.1038/ncomms14230.

Bio-inspired Robotics For Space Research

Year 2021, Volume: 1 Issue: 2, 64 - 77, 25.02.2021

Abstract

References

  • Akkaya, B. and Yazıcı, AM. (2020). Comparing Agile Leadeship with Biomimicry-Based Gray Wolf: Proposing A New Model. Business&Management Studies: An International Journal, Vol.8, Issue.2, 1455-1478.
  • Altun, Ş. (2011). Doğanın İnovasyonu- İnovasyon İçin Doğadan İlham Al, Elma Yayınevi.
  • Avcı, F. (2019). Doğa ve İnovasyon: Okullarda Biyomimikri. Anadolu Öğretmen Dergisi, Cilt:3, Sayı:2, DOI:10.35346/aod.604872.
  • Arienti, A. Calisti, M. Serchi, F. G. and Laschi, C. (2013). PoseiDRONE: Design of a soft-bodied ROV with crawling, swimming and manipulation ability. OCEANS 2013 MTS/IEEE – San Diego: An Ocean in Common.
  • Bar-Cohen, Y. (2006). Biomimetics: biologically inspired technology. II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS. C. A. Mota Soares et all. (Eds.) Lisbon. Portugal. July 18-21.
  • Benyus, JM. (1997). Biomimicry. New York: William Morrow.
  • Birkmeyer, P. Peterson, K. and Fearing, RS. (2009). DASH: A dynamic 16g hexapedal robot. RSJ International Conference on Intelligent Robots and Systems IEEE. 2683- 2689. 10.1109/IROS. 2009. 5354561
  • Cianchetti, M. Calisti, M. Margheri, L. Kuba, M. and Laschi, C. (2015). Bioinspired locomotion and grasping in water: The soft eight-arm OCTOPUS robot. Bioinspiration&Biomimetics, 10(3), DOI:10.1088/1748-3190/10/3/035003.
  • Eliakim, I. Cohen, Z. Kosa, G. and Yovel, Y. (2018). A fully autonomous terrestrial bat-like acoustic robot, PLoS Computational Biology, 14(9): e1006406, https://doi.org/10.1371/journal.pcbi.1006406 Accessed: September. 27,2020.
  • ESA. (2019). Dark meets light on Mars, Retrieved from https://www.esa.int/About_Us/ESAC/Dark_meets_light_on_Mars Accessed: September. 25,2020.
  • Fras, J. Noh, Y. Marcias, M. Wurdemann, H. and Althoefer, K. (2018). Bio-Inspired Octopus Robot Based on Novel Soft Fluidic Actuator. IEEE International Conference on Robotics and Automation. Volume:2018. DOI:10.1109/ICRA.2018.8460629.
  • Frishberg, M. (2015). What Would Nature Do? The Rise of Biomimicry. Research-Technology Management, Vol.58, Vol.6.
  • Ginsberg, M. Schiano, J. Kramer, M. and Alleyne, M. (2013). A Case Study in Bio-Inspired Engineering Design: Defense Applications of Exoskeletal Sensors. Defense & Security Analysis, 29 (2), 156-169.
  • Hassanalion, M. Pirinç, D. and Abdelkefi, A. (2018). Evolution of space drones for planetary exploration: A review. Progress in Aerospace Sciences, 97:61-105. DOI:10.1016/j.paerosci.2018.01.003.
  • Ijspeert, A. Crespi, A. Ryczko, D. and Cabelguen, J. (2007). From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science, 315(5817), 1416-1420. Retrieved October 7, 2020, from http://www.jstor.org/stable/20035751
  • İnner, S. (2019). Biyomimikri ve Parametrik Tasarım İlişkisinin Mimari Alanında Kullanımı ve Gelişimi. Tasarım Enformatiği, Volume 1, Issue 1, 15-29.
  • Jiang, H. Hawkes, E. Fuller, C. Estrada, M. Suresh, S. Abcouwer, N. Han, A. Wang, S. Ploch, C. Parness, A. and Cutkosky, M. (2017). A robotic device using gecko-inspired adhesives can grasp and manipulate large objects in microgravity. Science Robotics, 2(7): eaan4545. DOI: 10.1126/scirobotics.aan4545.
  • Kennedy, E. Fecheyr- Lippens, D. Hsiung, B. Niewiarowski, PH. and Kolodziej, M. (2015). Biomimicry: A Path to Sustainable Innovation. Massachusetts Institute of Technology Design, Volume 31, Number 3. doi:10.1162/DESI_a_00339.
  • Kim, J. and Park, K. (2018). The Design Characteristics of Nature-inspired Buildings. Civil Engineering and Architecture, 6 (2). 88-107. DOI: 10.13189/cea.2018.060206.
  • Kang, C. (2018). Marsbee - Swarm of Flapping Wing Flyers for Enhanced Mars Exploration, NASA. Retrieved from https://www.nasa.gov/directorates/spacetech/niac/2018_Phase_I_Phase_II/Marsbee_Swarm_of_Flapping_Wing_Flyers_for_Enhanced_Mars_Exploration/. Accessed: 29.08.2020.
  • Knight, W. (2017). An Ostrich-Like Robot Pushes the Limit of Legged Locomotion, MIT Technology Review. Retrieved from. https://www.technologyreview.com/2017/05/02/152048/an-ostrich-like-robot-pushes-the-limits-of-legged-locomotion/. Accessed: 28.08.2020.
  • Launius, R. (2019). Reaching for the Moon: A Short History of the Space Race. New Haven; London: Yale University Press. Retrieved October 7, 2020, from http://www.jstor.org/stable/j.ctvhrcxzx
  • Lee, W. Falk, B. Chiu, C. Krishnan, A. Arbour, JH. and Moss, CF. (2017). Tongue-driven sonar beam steering by a lingual-echolocating fruit bat. PLOS Biology. Retrieved from https://doi.org/10.1371/journal.pbio.2003148 . Accessed: 25.09.2020
  • Lentink, D. (2014). Bioinspired flight control. Bioinspiration&Biomimetics, 9, 020302, (8pp). doi:10.1088/1748-31-82/9/2/020301.
  • Lemburg, J. Fernandez, J. Eich, M. and Mronga, D. (2011, May). AILA- design of an autonomous mobile dual-arm robot, Paper presented at Proceedings- IEEE International Conference on Robotics and Automation, ICRA 2011, Shanghai, China, 9-13 May, 2011. DOI:10.1109/ICRA.2011.5979775
  • Liljebäck, P. Pettersen, KY. Stavdahl, Ø. and Gravdahl, JT. (2012). Snake Robot Locomotion in Environments with Obstacles. IEEE Transactions on Mechatronics, 17 (6): 1158-1169. DOI:10.1109/TMECH.2011.2159863.
  • Mahon, C. (2018). Robot Cockroaches May Be the Future of Space Exploration, Outer Places. Retrieved from. https://www.outerplaces.com/science/item/17800-robot-cockroachs-space-exploration. Access date: 29.08.2020.
  • Marshall, A. and Lozeva, S. (2009). Questioning the Theory and Practice of Biomimicry. Int. J. of Design&Nature and Ecodynamics, Vol.4, No.1, 1-10. DOI:10.2495/DNE-V4-N1-1-10.
  • Mattar, E. (2013). A Survey of bio-inspired robotics hands implementation: New directions in dexterous manipulation. Robotics and Autonomous Systems, Vol.61, No.5, May, pp.517-544.
  • Menon, C. Murphy, M. and Sitti, M. (2004). Gecko Inspired Surface Climbing Robots. IEEE International Conference on Robotics and Biomimetics, 431- 436. DOI: 10.1109/ROBIO.2004.1521817
  • Menon, C. Murphy, M. Sitti, M. and Lan, N. (2007). Space exploration-towards bio-inspired climbing robots. Bioinspiration and Robotics: Walking and Climbing Robots. Book edited by: Maki K. Habib, ISBN 978-3-902613-15-8, pp.544. I-Tech. Vienna. Austria. EU. September 2007.
  • Menon, C. Broschart, M. and Lan, N. (2007). Biomimetics and robotics for space applications: challenges and emerging Technologies. IEEE International Conference on Robotics and Automation-Workshop on Biomimetic Robotics.
  • Merz, M. Transeth, AA. Johansen, G. and Bjerkeng, M. (2018). Snake Robots For Space Applications (SAROS). SINTEF. Number. 52. Retrieved from https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2565930/SINTEF%2b2017-00453.pdf?sequence=1&isAllowed=y. Access date:29.08.2020.
  • NASA/Johnson Space Center. (2003, July 2) "Humans, Robots Work Together To Test 'Spacewalk Squad' Concept.", https://www.nasa.gov/home/hqnews/2003/jul/HQ_03227_Human_Concept.html
  • NASA. (2014, April 24). A step up for NASA’s robonaut: Ready for climbing legs. https://www.nasa.gov/content/a-step-up-for-nasa-s-robonaut-ready-for-climbing-legs
  • NASA (2015, June 11) “NASA Looks to University Robotics Groups to Advance Latest Humanoid Robot” https://www.nasa.gov/feature/nasa-looks-to-university-robotics-groups-to-advance-latest-humanoid-robot
  • NASA. (2016, Sept 2). NASA counting on humanoid robots for deep space exploration, https://gameon.nasa.gov/2016/02/09/nasa-counting-on-humanoid-robots-for-deep-space-exploration/
  • NASA. (2017, April 13). NASA Missions Provide New Insights into ‘Ocean Worlds’ in Our Solar System, https://europa.nasa.gov/news/3/nasa-missions-provide-new-insights-into-ocean-worlds-in-our-solar-system/
  • NASA. (2019, December 23) Space History Is Made in This NASA Robot Factory, https://mars.nasa.gov/news/8575/space-history-is-made-in-this-nasa-robot-factory/
  • Özdoğan, E. Demir, A. and Seventekin, N. (2006). Lotus Etkili Yüzeyler. Tekstil ve Konfeksiyon Dergisi, 16(1), 287-290.
  • Primlani, RV. (2013). Biomimicry: On the Frontiers of Design. XIMB Journal, 10(2), 139-148.
  • Ramezani, A. Chung, SJ. and Hutchinson, S. (2017). A biomimetic robotic platform to study flight specializations of bats, Science Robotics, Vol.2, Issue 3, eaal2505, DOI: 10.1126/scirobotics.aal2505
  • Ribak, G. and Wiehs, D. (2011). Jumping without Using Legs: The Jump of the Click-Beetles (Elateriade) Is Morphologically Constrained, PLoS One, 6(6): e20871, doi: 10.1371/journal.pone.0020871 Accessed: October. 01, 2020.
  • Robots in space. (2004). Nature, 428, 877. https://doi.org/10.1038/428877b.
  • Rubenson, J. Llyod, DG. Heliams, DB. Besier, TF. and Fournier, PA. (2011). Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics. J. R. Soc. Interface, 8(58): 740–755. doi: 10.1098/rsif.2010.0466 ; Accessed: October 04, 2020.
  • Sanchez, CJ. Chiu, CW. Zhou, Y. González, JM. Vinson, SB. and Liang, H. (2015). Locomotion control of hybrid cockroach robots. J. R. Soc. Interface, 12: 20141363. http://dx.doi.org/10.1098/rsif.2014.1363.
  • Sockol, MD. Raichlen, DA. and Pontzer, H. (2007). Chimpanzee locomotor energetics and the origin of human bipedalism, Proceedings of the National Academy of Sciences, Jul 2007, 104 (30) 12265-12269; DOI: 10.1073/pnas.0703267104
  • Volstad, NL. and Boks, C. (2012). On the use of Biomimicry as a Useful Tool for the Industrial Designer. Sustainable Development, 20(3), 189-199.
  • Vuuren, LV. (2014). Biomimicry: exploring nature’s genius for a beter tomorrow. Water Whell, Volume 13, Issue 6, p.12-15.
  • Witze, A. (2017). High-jumping beetle inspires agile robots. Nature, doi:10.1038/nature.2017.22981.
  • Yazıcı, AM. and Darıcı, S. (2019). The New Opportunities in Space Economy, Journal of the Human and Social Science Researches, 8(4), 3252-3271.
  • Yazıcı, AM. (2020). Biomimicry and Agile Leadership in Industry 4.0. A. Bülent (Ed.), Agile Business Leadership Methods for Industry 4.0 içinde (s.155-170). Emerald Publishing. doi:10.1108/978-1-80043-380-920201010.
  • Yoshida, K. (2010). Achievements in space robotics. IEEE Robotics&Automation Magazine, DOI:10.1109/MRA.2009.934818.
  • Yuk, H. Lin, S. Ma, C. Takaffoli, M. Fang, NX. and Zhao, X. (2017). Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications, 8:14230. DOI:10.1038/ncomms14230.
There are 54 citations in total.

Details

Primary Language English
Subjects Business Systems in Context
Journal Section Research Articles
Authors

Ayşe Meriç Yazıcı 0000-0001-6769-2599

Publication Date February 25, 2021
Submission Date December 8, 2020
Acceptance Date February 18, 2021
Published in Issue Year 2021 Volume: 1 Issue: 2

Cite

APA Yazıcı, A. M. (2021). Bio-inspired Robotics For Space Research. Havacılık Ve Uzay Çalışmaları Dergisi, 1(2), 64-77.