Research Article
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 2, 100 - 107, 31.12.2023
https://doi.org/10.54559/jauist.1400386

Abstract

References

  • V. Loku, N. L. Braha, M. Et, A. Tato, Tauberian theorems for the generalized de la Vallée-Poussin mean-convergent sequences of fuzzy numbers, Bulletin of Mathematical Analysis and Applications 9 (2) (2017) 45–56.
  • S. Enginoğlu, S. Demiriz, A comparison with the convergent, Cesàro convergent and Riesz convergent sequences of fuzzy numbers, in: İ. Yüksek, F. Yiğit, H. Baraçlı (Eds.), FUZZYSS’15 The 4th International Fuzzy Systems Symposium, İstanbul, 2015, pp. 416–419.
  • B. C. Tripathy, A. Baruah, Nörlund and Riesz mean of sequences of fuzzy real numbers, Applied Mathematics Letters 23 (5) (2010) 651–655.
  • M. Matloka, Sequences of fuzzy numbers, BUSEFAL 28 (1) (1986) 28–37.
  • S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1) (1989) 123–126.
  • F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Mathematica Slovaca 45 (3) (1995) 269–273.
  • J-S. Kwon, On statistical and p-Cesàro convergence of fuzzy numbers, Korean Journal of Computational and Applied Mathematics 7 (1) (2000) 195–203.
  • Y. Altın, M. Mursaleen, H. Altınok, Statistical summability (C,1) for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent & Fuzzy Systems 21 (6) (2010) 379–858.
  • S. Aytar, S. Pehlivan, Statistical convergence of sequences of fuzzy numbers and sequences of α-cuts, International Journal of General Systems 37 (2) (2008) 231–237.

Statistical Riesz and Nörlund convergence for sequences of fuzzy numbers

Year 2023, Volume: 4 Issue: 2, 100 - 107, 31.12.2023
https://doi.org/10.54559/jauist.1400386

Abstract

Nuray and Savaş proposed statistical convergence of fuzzy number sequences. Afterward, Tripathy and Baruah presented Riesz and Nörlund convergence for sequences of fuzzy numbers. This paper defines statistical Riesz and Nörlund convergence of fuzzy number sequences. It then shows that if a sequence of fuzzy numbers is convergent, then it is statistical Riesz/Nörlund convergent, but the converse is not always true. Finally, this paper discusses the need for further research.

References

  • V. Loku, N. L. Braha, M. Et, A. Tato, Tauberian theorems for the generalized de la Vallée-Poussin mean-convergent sequences of fuzzy numbers, Bulletin of Mathematical Analysis and Applications 9 (2) (2017) 45–56.
  • S. Enginoğlu, S. Demiriz, A comparison with the convergent, Cesàro convergent and Riesz convergent sequences of fuzzy numbers, in: İ. Yüksek, F. Yiğit, H. Baraçlı (Eds.), FUZZYSS’15 The 4th International Fuzzy Systems Symposium, İstanbul, 2015, pp. 416–419.
  • B. C. Tripathy, A. Baruah, Nörlund and Riesz mean of sequences of fuzzy real numbers, Applied Mathematics Letters 23 (5) (2010) 651–655.
  • M. Matloka, Sequences of fuzzy numbers, BUSEFAL 28 (1) (1986) 28–37.
  • S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems 33 (1) (1989) 123–126.
  • F. Nuray, E. Savaş, Statistical convergence of sequences of fuzzy numbers, Mathematica Slovaca 45 (3) (1995) 269–273.
  • J-S. Kwon, On statistical and p-Cesàro convergence of fuzzy numbers, Korean Journal of Computational and Applied Mathematics 7 (1) (2000) 195–203.
  • Y. Altın, M. Mursaleen, H. Altınok, Statistical summability (C,1) for sequences of fuzzy real numbers and a Tauberian theorem, Journal of Intelligent & Fuzzy Systems 21 (6) (2010) 379–858.
  • S. Aytar, S. Pehlivan, Statistical convergence of sequences of fuzzy numbers and sequences of α-cuts, International Journal of General Systems 37 (2) (2008) 231–237.
There are 9 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Research Articles
Authors

Burak Arslan 0000-0002-1724-8841

Samira Jalali 0000-0003-1774-6274

Serdar Enginoğlu 0000-0002-7188-9893

Publication Date December 31, 2023
Submission Date December 5, 2023
Acceptance Date December 25, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Arslan, B., Jalali, S., & Enginoğlu, S. (2023). Statistical Riesz and Nörlund convergence for sequences of fuzzy numbers. Journal of Amasya University the Institute of Sciences and Technology, 4(2), 100-107. https://doi.org/10.54559/jauist.1400386
AMA Arslan B, Jalali S, Enginoğlu S. Statistical Riesz and Nörlund convergence for sequences of fuzzy numbers. J. Amasya Univ. Inst. Sci. Technol. December 2023;4(2):100-107. doi:10.54559/jauist.1400386
Chicago Arslan, Burak, Samira Jalali, and Serdar Enginoğlu. “Statistical Riesz and Nörlund Convergence for Sequences of Fuzzy Numbers”. Journal of Amasya University the Institute of Sciences and Technology 4, no. 2 (December 2023): 100-107. https://doi.org/10.54559/jauist.1400386.
EndNote Arslan B, Jalali S, Enginoğlu S (December 1, 2023) Statistical Riesz and Nörlund convergence for sequences of fuzzy numbers. Journal of Amasya University the Institute of Sciences and Technology 4 2 100–107.
IEEE B. Arslan, S. Jalali, and S. Enginoğlu, “Statistical Riesz and Nörlund convergence for sequences of fuzzy numbers”, J. Amasya Univ. Inst. Sci. Technol., vol. 4, no. 2, pp. 100–107, 2023, doi: 10.54559/jauist.1400386.
ISNAD Arslan, Burak et al. “Statistical Riesz and Nörlund Convergence for Sequences of Fuzzy Numbers”. Journal of Amasya University the Institute of Sciences and Technology 4/2 (December 2023), 100-107. https://doi.org/10.54559/jauist.1400386.
JAMA Arslan B, Jalali S, Enginoğlu S. Statistical Riesz and Nörlund convergence for sequences of fuzzy numbers. J. Amasya Univ. Inst. Sci. Technol. 2023;4:100–107.
MLA Arslan, Burak et al. “Statistical Riesz and Nörlund Convergence for Sequences of Fuzzy Numbers”. Journal of Amasya University the Institute of Sciences and Technology, vol. 4, no. 2, 2023, pp. 100-7, doi:10.54559/jauist.1400386.
Vancouver Arslan B, Jalali S, Enginoğlu S. Statistical Riesz and Nörlund convergence for sequences of fuzzy numbers. J. Amasya Univ. Inst. Sci. Technol. 2023;4(2):100-7.