Research Article
BibTex RIS Cite

The Effect of Cavity Structure on the Wing Profile

Year 2019, Volume: 3 Issue: 2, 89 - 105, 25.12.2019
https://doi.org/10.30518/jav.614043

Abstract

 In this study, the effects of cavity
structures, which are located in different regions on NACA 0018 wing profile,
on the flow structure are investigated theoretically by using computational
fluid dynamics (CFD). These effects are applied for different attack angles on
the same wing profile with and without cavity. As a result of our analysis,
pathlines, velocity contours, pressure contours, velocity streamlines are drawn
for NACA 0018 wing profile with and without cavity, and compared with cavity
structures with and without intake system.




References

  • [1] A. Öztürk ve M. Çoban, Bir Kanat Profili Üzerindeki Girdap Tuzağının Akış Yapısı Üzerine Etkisinin Deneysel İncelenmesi, V. Ulusal Havacılık ve Uzay Konferansı, Erciyes Üniversitesi, Kayseri, 2014.[2] E. W. Kruppa, “A Wind Tunnel Investigation of the Kasper Vortex Concept”, The American Institute of Aeronautics and Astronautics, 77-310, 1977.[3] P. G. Saffman ve J. S. Sheffield, “Flow Over a Wing with an Attached Free Vortex”, Studies in Applied Mathematics, 57, 107-117, 1977. [4] V. J. Rossow, “Lift Enhancement by an Externally Trapped Vortex”, Journal of Aircraft, 15, 618-625, 1978.[5] M. K. Huang ve C. Y. Chow, “Trapping a Free Vortex by Jonkowski Airfoils”, The Journal of American Institute of Aeronautics and Astronautics, 20, 292-298, 1982. [6] C. A. J. Fletcher ve G. D. H. Stewart, “Bus Drag Reduction by the Trapped Vortex Concept for a Single Bus and Two Buses in Tandem”, Journal of Wind Engineering and Industrial Aerodynamics, 24, 143-168, 1986.[7] P. A. Baranov, S. V. Guvernyuk, M. A. Zubin ve S. A. Isaev, “Numerical and Physical Modeling of the Circulation Flow in a Vortex Cell in the Wall of a Rectilinear Channel”, Journal of Fluid Mechanics, 35, 663-673, 2000.[8] S. A. Isaev, S. V. Guvernyuk, M. A. Zubin ve Yu. S. Prigorodov, “Numerical and Physical Modeling of a Low-Velocity Air Flow in a Channel with a Circular Vortex Cell”, Journal of Engineering Physics and Thermophysics, 73, 337-343, 2000.[9] A. Bouferrouk ve S. I. Chernyshenko, Stabilisation of a Trapped Vortex for Enhancing Aerodynamic Flows, 15th Australasian Fluids Mechanics Conference, 2004.[10] S. I. Chernyshenko, I. P. Castro, T. Hetsch, A. Iollo, E. Minisci ve R. Savelsberg, Vortex Cell Shape Optimization for Separation Control, 8th World Congress on Computational Mechanics (WCCM8), 2008.[11] F. De Gregorio ve G. Fraioli, Flow Control on a High Thickness Airfoil by a Trapped Vortex Cavity, 14th International Symposium on Applications of Lasers Techniques to Fluid Mechanics Lisbon, Portugal, 2008.[12] W. F. J. Olsman, Influence of a Cavity on the Dynamical an Airfoil, TU Eindhoven, DOI: 10.6100/IR673149, 2010.[13] R. Donelli, F. De Gregorio, P. Iannelli, Flow Separation Control by Trapped Vortex, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4 - 7 January 2010, Orlando, Florida, 2010.

Oyuk Boşluk Yapısının Kanat Profili Üzerine Etkisi

Year 2019, Volume: 3 Issue: 2, 89 - 105, 25.12.2019
https://doi.org/10.30518/jav.614043

Abstract

Bu çalışmada, NACA 0018 kanat
profili üzerindeki oyuk boşluk yapısının akış yapısı üzerine etkileri
hesaplamalı akışkanlar dinamiği (HAD) kullanılarak teorik olarak incelenmiştir.
Bu etkiler, boşluklu yapıya sahip olan ve olmayan aynı kanat profili üzerinde
farklı hücum açıları için uygulanmıştır. Analizlerimiz sonucunda, oyuklu ve
oyuksuz NACA 0018 kanat profili için yörünge çizgileri, hız konturları, basınç
konturları, hız akım çizgileri çizdirilmiş ve emme sistemi bulunan ve
bulunmayan boşluk yapılarındaki akım çizgileri ile karşılaştırılmıştır. 

References

  • [1] A. Öztürk ve M. Çoban, Bir Kanat Profili Üzerindeki Girdap Tuzağının Akış Yapısı Üzerine Etkisinin Deneysel İncelenmesi, V. Ulusal Havacılık ve Uzay Konferansı, Erciyes Üniversitesi, Kayseri, 2014.[2] E. W. Kruppa, “A Wind Tunnel Investigation of the Kasper Vortex Concept”, The American Institute of Aeronautics and Astronautics, 77-310, 1977.[3] P. G. Saffman ve J. S. Sheffield, “Flow Over a Wing with an Attached Free Vortex”, Studies in Applied Mathematics, 57, 107-117, 1977. [4] V. J. Rossow, “Lift Enhancement by an Externally Trapped Vortex”, Journal of Aircraft, 15, 618-625, 1978.[5] M. K. Huang ve C. Y. Chow, “Trapping a Free Vortex by Jonkowski Airfoils”, The Journal of American Institute of Aeronautics and Astronautics, 20, 292-298, 1982. [6] C. A. J. Fletcher ve G. D. H. Stewart, “Bus Drag Reduction by the Trapped Vortex Concept for a Single Bus and Two Buses in Tandem”, Journal of Wind Engineering and Industrial Aerodynamics, 24, 143-168, 1986.[7] P. A. Baranov, S. V. Guvernyuk, M. A. Zubin ve S. A. Isaev, “Numerical and Physical Modeling of the Circulation Flow in a Vortex Cell in the Wall of a Rectilinear Channel”, Journal of Fluid Mechanics, 35, 663-673, 2000.[8] S. A. Isaev, S. V. Guvernyuk, M. A. Zubin ve Yu. S. Prigorodov, “Numerical and Physical Modeling of a Low-Velocity Air Flow in a Channel with a Circular Vortex Cell”, Journal of Engineering Physics and Thermophysics, 73, 337-343, 2000.[9] A. Bouferrouk ve S. I. Chernyshenko, Stabilisation of a Trapped Vortex for Enhancing Aerodynamic Flows, 15th Australasian Fluids Mechanics Conference, 2004.[10] S. I. Chernyshenko, I. P. Castro, T. Hetsch, A. Iollo, E. Minisci ve R. Savelsberg, Vortex Cell Shape Optimization for Separation Control, 8th World Congress on Computational Mechanics (WCCM8), 2008.[11] F. De Gregorio ve G. Fraioli, Flow Control on a High Thickness Airfoil by a Trapped Vortex Cavity, 14th International Symposium on Applications of Lasers Techniques to Fluid Mechanics Lisbon, Portugal, 2008.[12] W. F. J. Olsman, Influence of a Cavity on the Dynamical an Airfoil, TU Eindhoven, DOI: 10.6100/IR673149, 2010.[13] R. Donelli, F. De Gregorio, P. Iannelli, Flow Separation Control by Trapped Vortex, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition 4 - 7 January 2010, Orlando, Florida, 2010.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Aerospace Engineering
Journal Section Research Articles
Authors

Hüsamettin Alperen Alabaş 0000-0001-8825-0052

Mohammed Albatran This is me 0000-0002-5516-2539

Tayfun Çelik This is me 0000-0002-0107-7291

Mustafa Lüleci This is me 0000-0003-0411-0760

Ümit Deniz Göker 0000-0001-9985-5735

Publication Date December 25, 2019
Submission Date September 2, 2019
Acceptance Date December 4, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

APA Alabaş, H. A., Albatran, M., Çelik, T., Lüleci, M., et al. (2019). Oyuk Boşluk Yapısının Kanat Profili Üzerine Etkisi. Journal of Aviation, 3(2), 89-105. https://doi.org/10.30518/jav.614043

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence