Research Article
BibTex RIS Cite

Design, Modelling and Control of an Eight-Rotors UAV with Asymmetric Configuration for Use in Remote Sensing Systems

Year 2021, Volume: 5 Issue: 2, 72 - 81, 20.12.2021
https://doi.org/10.30518/jav.943804

Abstract

The use of multirotor unmanned aerial vehicles (UAV), which can take-off and landing vertically, is gradually expanding. Although there are many types of these vehicles with standard configuration, non-standard configurations may be required for special purposes usage. So, an octocopter UAV with asymmetric configuration is proposed in this study. In particular, this asymmetrically configured octocopter is intended to be used for imaging or mapping purposes, and may be a solution to widen the viewing angle of the camera or any sensor placed on the vehicle, especially in the use of multiple cameras and sensors. The mathematical model of this proposed UAV system was obtained and the trajectory tracking was performed using PID control method. The control parameters of the controller were determined using Grey Wolf Optimizer (GWO). Considering the propellers determined in two different sizes due to its asymmetrical structure, it has been observed that the proposed UAV performs a satisfactory trajectory tracking.

References

  • S. Yu, J. Heo, S. Jeong, Y. Kwon, “Technical Analysis of VTOL UAV”, J. Comput. Commun. 04 (15), 92–97, 2016.
  • A.S. Saeed, A.B. Younes, S. Islam, J. Dias, L. Seneviratne, G. Cai, “A review on the platform design, dynamic modeling and control of hybrid UAVs”, in: 2015 Int. Conf. Unmanned Aircr. Syst., IEEE, pp. 806–815, 2015.
  • A.S. Saeed, A.B. Younes, C. Cai, G. Cai, “A survey of hybrid Unmanned Aerial Vehicles”, Prog. Aerosp. Sci., 98, 91–105, 2018.
  • Ö. Dündar, M. Bilici, T. Ünler, “Design and performance analyses of a fixed wing battery VTOL UAV”, Eng. Sci. Technol. An Int. J., 23 (5), 1182–1193, 2020.
  • M. Hassanalian, A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review”, Prog. Aerosp. Sci., 91, 99–131, 2017.
  • H. Bouadi, F. Mora-Camino, “Modeling and Adaptive Flight Control for Quadrotor Trajectory Tracking”, J. Aircr., 55 (2), 666–681, 2017.
  • Y.-R. Tang, X. Xiao, Y. Li, “Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor”, Measurement, 109, 51–64, 2017.
  • A.A. Najm, I.K. Ibraheem, “Nonlinear PID controller design for a 6-DOF UAV quadrotor system”, Eng. Sci. Technol. An Int. J., 22 (4), 1087–1097, 2019.
  • A. Bin Junaid, A.D.D.C. Sanchez, J.B. Bosch, N. Vitzilaios, Y. Zweiri, “Design and implementation of a dual-axis tilting quadcopter”, Robotics, 7 (4), 65, 2018.
  • R. Niemiec, F. Gandhi, R. Singh, “Control and Performance of a Reconfigurable Multicopter”, J. Aircr., 55 (5), 1855–1866, 2018.
  • S. Brischetto, A. Ciano, C.G. Ferro, “A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process”, Curved Layer. Struct., 3 (1), 202–213, 2016.
  • M. Kuric, B. Lacevic, N. Osmic, A. Tahirovic, “RLS-based fault-tolerant tracking control of Multirotor Aerial Vehicles”, in: 2017 IEEE Int. Conf. Adv. Intell. Mechatronics, IEEE, 2017: pp. 1148–1153.
  • M. McKay, R. Niemiec, F. Gandhi, “An Analysis of Classical and Alternate Hexacopter Configurations with Single Rotor Failure”, 73rd AHS Int. Annu. Forum. (2017) 1–11.
  • A.-R. Merheb, H. Noura, F. Bateman, “Emergency Control of AR Drone Quadrotor UAV Suffering a Total Loss of One Rotor”, IEEE/ASME Trans. Mechatronics, 22 (2), 961–971, 2019.
  • L. Deng, Z. Mao, X. Li, Z. Hu, F. Duan, Y. Yan, “UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras”, ISPRS J. Photogramm. Remote Sens., 146, 124–136, 2018.
  • J.J. Sofonia, S. Phinn, C. Roelfsema, F. Kendoul, Y. Rist, “Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning”, ISPRS J. Photogramm. Remote Sens., 149, 105–118, 2019.
  • G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)”, Photogramm. Eng. Remote Sensing, 81, 281–329, 2015.
  • C. Toth, G. Jóźków, “Remote sensing platforms and sensors: A survey”, ISPRS J. Photogramm. Remote Sens., 115, 22–36, 2016.
  • V.K. Gadi, A. Garg, S. Prakash, L. Wei, S. Andriyas, “A non-intrusive image analysis technique for measurement of heterogeneity in grass species around tree vicinity in a green infrastructure”, Measurement, 114, 132–143, 2018.
  • T. Ishida, J. Kurihara, F.A. Viray, S.B. Namuco, E.C. Paringit, G.J. Perez, Y. Takahashi, J.J. Marciano, “A novel approach for vegetation classification using UAV-based hyperspectral imaging”, Comput. Electron. Agric., 144, 80–85, 2018.
  • J.R. Kellner, J. Armston, M. Birrer, K.C. Cushman, L. Duncanson, C. Eck, C. Falleger, B. Imbach, K. Král, M. Krůček, J. Trochta, T. Vrška, C. Zgraggen, “New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar”, Surv. Geophys., 40 (4), 959–977, 2019.
  • M.A. Zulkipli, K.N. Tahar, “Multirotor UAV-Based Photogrammetric Mapping for Road Design”, Int. J. Opt., 2018, 1–7, 2018.
  • A.M. Saad, K.N. Tahar, “Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV)”, Measurement, 137, 647–654, 2019.
  • S. Jo, B. Lee, J. Oh, J. Song, C. Lee, S. Kim, J. Suk, “Experimental Study of In-Flight Deployment of a Multicopter from a Fixed-Wing UAV”, Int. J. Aeronaut. Sp. Sci., 20 (3), 697–709, 2019.
  • M. Jaud, P. Letortu, C. Théry, P. Grandjean, S. Costa, O. Maquaire, R. Davidson, N. Le Dantec, “UAV survey of a coastal cliff face – Selection of the best imaging angle”, Measurement, 139, 10–20, 2019.
  • B. Kršák, P. Blišťan, A. Pauliková, P. Puškárová, Ľ. Kovanič, J. Palková, V. Zelizňaková, “Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study”, Measurement, 91, 276–287, 2016.
  • R. Vijayanandh, S. Mano, M. Dinesh, M. Senthil Kumar, G. Raj Kumar, “Design, fabrication and simulation of hexacopter for forest surveillance”, ARPN J. Eng. Appl. Sci., 12 (12), 3879–3884, 2017.
  • H. Zakeri, F.M. Nejad, A. Fahimifar, Rahbin: “A quadcopter unmanned aerial vehicle based on a systematic image processing approach toward an automated asphalt pavement inspection”, Autom. Constr., 72 (2), 211–235, 2016.
  • M. Streßer, R. Carrasco, J. Horstmann, “Video-Based Estimation of Surface Currents Using a Low-Cost Quadcopter”, IEEE Geosci. Remote Sens. Lett., 14 (11), 2027–2031, 2017.
  • J. Liu, J. Lai, P. Lyu, D.D. Lefebvre, B. Jiang, Y. Malang, M. Qu, H.H.T. Liu, Y. Wang, S. Anderson, “Autonomous cyanobacterial harmful algal blooms monitoring using multirotor UAS”, Int. J. Remote Sens., 38 (8), 1–26, 2017.
  • K. Wu, G.A. Rodriguez, M. Zajc, E. Jacquemin, M. Clément, A. De Coster, S. Lambot, “A new drone-borne GPR for soil moisture mapping”, Remote Sens. Environ., 235, 111456, 2019.
  • H. Yao, R. Qin, X. Chen, “Unmanned aerial vehicle for remote sensing applications- A review”, Remote Sens., 11 (12), 1443, 2019.
  • D. Wierzbicki, “Multi-camera imaging system for UAV photogrammetry”, Sensors (Switzerland), 18 (8), 2433, 2018.
  • A. Tripolitsiotis, N. Prokas, S. Kyritsis, A. Dollas, I. Papaefstathiou, P. Partsinevelos, “Dronesourcing: a modular, expandable multi-sensor UAV platform for combined, real-time environmental monitoring”, Int. J. Remote Sens., 38 (8), 2757–2770, 2017.
  • H. Shakhatreh, A.H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N.S. Othman, A. Khreishah, M. Guizani, “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges”, IEEE Access., 7, 48572–48634, 2019.
  • B. Lillian, Infrared Cameras Inc., “http://www.infraredcamerasinc.com/” (accessed November 24, 2020).
  • A.M. Pérez Gordillo, J.S.V. Santos, O.D. Lopez Mejia, L.J.S. Collazos, J.A. Escobar, “Numerical and experimental estimation of the efficiency of a quadcopter rotor operating at hover”, Energies, 12 (2), 261, 2019.
  • E. Kuantama, I. Tarca, S. Dzitac, I. Dzitac, R. Tarca, “Flight stability analysis of a symmetrically-structured quadcopter based on thrust data logger information”, Symmetry (Basel), 10 (7), 291, 2018.
  • M.K. Joyo, Y. Raza, S.F. Ahmed, M.M. Billah, K. Kadir, K. Naidu, A. Ali, Z.M. Yusof, “Optimized proportional-integral-derivative controller for upper limb rehabilitation robot”, Electron., 8 (8), 826, 2019.
  • V. Gomez, N. Gomez, J. Rodas, E. Paiva, M. Saad, R. Gregor, “Pareto optimal PID tuning for Px4-based unmanned aerial vehicles by using a multi-objective particle swarm optimization algorithm”, Aerospace, 7 (6), 71, 2020.
  • M.T. Özdemir, D. Öztürk, “Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control”, Energies, 10 (12), 2134, 2017.
  • S. Mirjalili, S.M. Mirjalili, A. Lewis, “Grey Wolf Optimizer”, Adv. Eng. Softw., 69, 46–61, 2014.
  • J. Oliveira, P.M. Oliveira, J. Boaventura-Cunha, T. Pinho, “Evaluation of hunting-based optimizers for a quadrotor sliding mode flight controller”, Robotics, 9 (2), 1–20, 2020.
  • Şen MA, Bakırcıoğlu V, Kalyoncu M. “Three Degree of Freedom Leg Design for Quadruped Robots and Fractional Order PID (PiλDµ) Based Control”, Konya J Eng Sci, 8(2), 37–47, 2020.
  • Qu C, Gai W, Zhang J, Zhong M. “A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning”, Knowl. Base Syst., 194 (2), 105530, 2020.

Design, Modelling and Control of an Eight-Rotors UAV with Asymmetric Configuration for Use in Remote Sensing Systems

Year 2021, Volume: 5 Issue: 2, 72 - 81, 20.12.2021
https://doi.org/10.30518/jav.943804

Abstract

The use of multirotor unmanned aerial vehicles (UAV), which can take-off and landing vertically, is gradually expanding. Although there are many types of these vehicles with standard configuration, non-standard configurations may be required for special purposes usage. So, an octocopter UAV with asymmetric configuration is proposed in this study. In particular, this asymmetrically configured octocopter is intended to be used for imaging or mapping purposes, and may be a solution to widen the viewing angle of the camera or any sensor placed on the vehicle, especially in the use of multiple cameras and sensors. The mathematical model of this proposed UAV system was obtained and the trajectory tracking was performed using PID control method. The control parameters of the controller were determined using Grey Wolf Optimizer (GWO). Considering the propellers determined in two different sizes due to its asymmetrical structure, it has been observed that the proposed UAV performs a satisfactory trajectory tracking.

References

  • S. Yu, J. Heo, S. Jeong, Y. Kwon, “Technical Analysis of VTOL UAV”, J. Comput. Commun. 04 (15), 92–97, 2016.
  • A.S. Saeed, A.B. Younes, S. Islam, J. Dias, L. Seneviratne, G. Cai, “A review on the platform design, dynamic modeling and control of hybrid UAVs”, in: 2015 Int. Conf. Unmanned Aircr. Syst., IEEE, pp. 806–815, 2015.
  • A.S. Saeed, A.B. Younes, C. Cai, G. Cai, “A survey of hybrid Unmanned Aerial Vehicles”, Prog. Aerosp. Sci., 98, 91–105, 2018.
  • Ö. Dündar, M. Bilici, T. Ünler, “Design and performance analyses of a fixed wing battery VTOL UAV”, Eng. Sci. Technol. An Int. J., 23 (5), 1182–1193, 2020.
  • M. Hassanalian, A. Abdelkefi, “Classifications, applications, and design challenges of drones: A review”, Prog. Aerosp. Sci., 91, 99–131, 2017.
  • H. Bouadi, F. Mora-Camino, “Modeling and Adaptive Flight Control for Quadrotor Trajectory Tracking”, J. Aircr., 55 (2), 666–681, 2017.
  • Y.-R. Tang, X. Xiao, Y. Li, “Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor”, Measurement, 109, 51–64, 2017.
  • A.A. Najm, I.K. Ibraheem, “Nonlinear PID controller design for a 6-DOF UAV quadrotor system”, Eng. Sci. Technol. An Int. J., 22 (4), 1087–1097, 2019.
  • A. Bin Junaid, A.D.D.C. Sanchez, J.B. Bosch, N. Vitzilaios, Y. Zweiri, “Design and implementation of a dual-axis tilting quadcopter”, Robotics, 7 (4), 65, 2018.
  • R. Niemiec, F. Gandhi, R. Singh, “Control and Performance of a Reconfigurable Multicopter”, J. Aircr., 55 (5), 1855–1866, 2018.
  • S. Brischetto, A. Ciano, C.G. Ferro, “A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process”, Curved Layer. Struct., 3 (1), 202–213, 2016.
  • M. Kuric, B. Lacevic, N. Osmic, A. Tahirovic, “RLS-based fault-tolerant tracking control of Multirotor Aerial Vehicles”, in: 2017 IEEE Int. Conf. Adv. Intell. Mechatronics, IEEE, 2017: pp. 1148–1153.
  • M. McKay, R. Niemiec, F. Gandhi, “An Analysis of Classical and Alternate Hexacopter Configurations with Single Rotor Failure”, 73rd AHS Int. Annu. Forum. (2017) 1–11.
  • A.-R. Merheb, H. Noura, F. Bateman, “Emergency Control of AR Drone Quadrotor UAV Suffering a Total Loss of One Rotor”, IEEE/ASME Trans. Mechatronics, 22 (2), 961–971, 2019.
  • L. Deng, Z. Mao, X. Li, Z. Hu, F. Duan, Y. Yan, “UAV-based multispectral remote sensing for precision agriculture: A comparison between different cameras”, ISPRS J. Photogramm. Remote Sens., 146, 124–136, 2018.
  • J.J. Sofonia, S. Phinn, C. Roelfsema, F. Kendoul, Y. Rist, “Modelling the effects of fundamental UAV flight parameters on LiDAR point clouds to facilitate objectives-based planning”, ISPRS J. Photogramm. Remote Sens., 149, 105–118, 2019.
  • G. Pajares, “Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)”, Photogramm. Eng. Remote Sensing, 81, 281–329, 2015.
  • C. Toth, G. Jóźków, “Remote sensing platforms and sensors: A survey”, ISPRS J. Photogramm. Remote Sens., 115, 22–36, 2016.
  • V.K. Gadi, A. Garg, S. Prakash, L. Wei, S. Andriyas, “A non-intrusive image analysis technique for measurement of heterogeneity in grass species around tree vicinity in a green infrastructure”, Measurement, 114, 132–143, 2018.
  • T. Ishida, J. Kurihara, F.A. Viray, S.B. Namuco, E.C. Paringit, G.J. Perez, Y. Takahashi, J.J. Marciano, “A novel approach for vegetation classification using UAV-based hyperspectral imaging”, Comput. Electron. Agric., 144, 80–85, 2018.
  • J.R. Kellner, J. Armston, M. Birrer, K.C. Cushman, L. Duncanson, C. Eck, C. Falleger, B. Imbach, K. Král, M. Krůček, J. Trochta, T. Vrška, C. Zgraggen, “New Opportunities for Forest Remote Sensing Through Ultra-High-Density Drone Lidar”, Surv. Geophys., 40 (4), 959–977, 2019.
  • M.A. Zulkipli, K.N. Tahar, “Multirotor UAV-Based Photogrammetric Mapping for Road Design”, Int. J. Opt., 2018, 1–7, 2018.
  • A.M. Saad, K.N. Tahar, “Identification of rut and pothole by using multirotor unmanned aerial vehicle (UAV)”, Measurement, 137, 647–654, 2019.
  • S. Jo, B. Lee, J. Oh, J. Song, C. Lee, S. Kim, J. Suk, “Experimental Study of In-Flight Deployment of a Multicopter from a Fixed-Wing UAV”, Int. J. Aeronaut. Sp. Sci., 20 (3), 697–709, 2019.
  • M. Jaud, P. Letortu, C. Théry, P. Grandjean, S. Costa, O. Maquaire, R. Davidson, N. Le Dantec, “UAV survey of a coastal cliff face – Selection of the best imaging angle”, Measurement, 139, 10–20, 2019.
  • B. Kršák, P. Blišťan, A. Pauliková, P. Puškárová, Ľ. Kovanič, J. Palková, V. Zelizňaková, “Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study”, Measurement, 91, 276–287, 2016.
  • R. Vijayanandh, S. Mano, M. Dinesh, M. Senthil Kumar, G. Raj Kumar, “Design, fabrication and simulation of hexacopter for forest surveillance”, ARPN J. Eng. Appl. Sci., 12 (12), 3879–3884, 2017.
  • H. Zakeri, F.M. Nejad, A. Fahimifar, Rahbin: “A quadcopter unmanned aerial vehicle based on a systematic image processing approach toward an automated asphalt pavement inspection”, Autom. Constr., 72 (2), 211–235, 2016.
  • M. Streßer, R. Carrasco, J. Horstmann, “Video-Based Estimation of Surface Currents Using a Low-Cost Quadcopter”, IEEE Geosci. Remote Sens. Lett., 14 (11), 2027–2031, 2017.
  • J. Liu, J. Lai, P. Lyu, D.D. Lefebvre, B. Jiang, Y. Malang, M. Qu, H.H.T. Liu, Y. Wang, S. Anderson, “Autonomous cyanobacterial harmful algal blooms monitoring using multirotor UAS”, Int. J. Remote Sens., 38 (8), 1–26, 2017.
  • K. Wu, G.A. Rodriguez, M. Zajc, E. Jacquemin, M. Clément, A. De Coster, S. Lambot, “A new drone-borne GPR for soil moisture mapping”, Remote Sens. Environ., 235, 111456, 2019.
  • H. Yao, R. Qin, X. Chen, “Unmanned aerial vehicle for remote sensing applications- A review”, Remote Sens., 11 (12), 1443, 2019.
  • D. Wierzbicki, “Multi-camera imaging system for UAV photogrammetry”, Sensors (Switzerland), 18 (8), 2433, 2018.
  • A. Tripolitsiotis, N. Prokas, S. Kyritsis, A. Dollas, I. Papaefstathiou, P. Partsinevelos, “Dronesourcing: a modular, expandable multi-sensor UAV platform for combined, real-time environmental monitoring”, Int. J. Remote Sens., 38 (8), 2757–2770, 2017.
  • H. Shakhatreh, A.H. Sawalmeh, A. Al-Fuqaha, Z. Dou, E. Almaita, I. Khalil, N.S. Othman, A. Khreishah, M. Guizani, “Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges”, IEEE Access., 7, 48572–48634, 2019.
  • B. Lillian, Infrared Cameras Inc., “http://www.infraredcamerasinc.com/” (accessed November 24, 2020).
  • A.M. Pérez Gordillo, J.S.V. Santos, O.D. Lopez Mejia, L.J.S. Collazos, J.A. Escobar, “Numerical and experimental estimation of the efficiency of a quadcopter rotor operating at hover”, Energies, 12 (2), 261, 2019.
  • E. Kuantama, I. Tarca, S. Dzitac, I. Dzitac, R. Tarca, “Flight stability analysis of a symmetrically-structured quadcopter based on thrust data logger information”, Symmetry (Basel), 10 (7), 291, 2018.
  • M.K. Joyo, Y. Raza, S.F. Ahmed, M.M. Billah, K. Kadir, K. Naidu, A. Ali, Z.M. Yusof, “Optimized proportional-integral-derivative controller for upper limb rehabilitation robot”, Electron., 8 (8), 826, 2019.
  • V. Gomez, N. Gomez, J. Rodas, E. Paiva, M. Saad, R. Gregor, “Pareto optimal PID tuning for Px4-based unmanned aerial vehicles by using a multi-objective particle swarm optimization algorithm”, Aerospace, 7 (6), 71, 2020.
  • M.T. Özdemir, D. Öztürk, “Comparative performance analysis of optimal PID parameters tuning based on the optics inspired optimization methods for automatic generation control”, Energies, 10 (12), 2134, 2017.
  • S. Mirjalili, S.M. Mirjalili, A. Lewis, “Grey Wolf Optimizer”, Adv. Eng. Softw., 69, 46–61, 2014.
  • J. Oliveira, P.M. Oliveira, J. Boaventura-Cunha, T. Pinho, “Evaluation of hunting-based optimizers for a quadrotor sliding mode flight controller”, Robotics, 9 (2), 1–20, 2020.
  • Şen MA, Bakırcıoğlu V, Kalyoncu M. “Three Degree of Freedom Leg Design for Quadruped Robots and Fractional Order PID (PiλDµ) Based Control”, Konya J Eng Sci, 8(2), 37–47, 2020.
  • Qu C, Gai W, Zhang J, Zhong M. “A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning”, Knowl. Base Syst., 194 (2), 105530, 2020.
There are 45 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering
Journal Section Research Articles
Authors

Nihat Çabuk 0000-0002-3668-7591

Şahin Yıldırım 0000-0002-7149-3274

Publication Date December 20, 2021
Submission Date May 27, 2021
Acceptance Date September 11, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Çabuk, N., & Yıldırım, Ş. (2021). Design, Modelling and Control of an Eight-Rotors UAV with Asymmetric Configuration for Use in Remote Sensing Systems. Journal of Aviation, 5(2), 72-81. https://doi.org/10.30518/jav.943804

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence