Research Article
BibTex RIS Cite

A Comprehensive Analysis of Society's Perspective on Urban Air Mobility

Year 2023, Volume: 7 Issue: 3, 353 - 364, 15.11.2023
https://doi.org/10.30518/jav.1324997

Abstract

Urban Air Mobility (UAM) is an innovative concept that offers a distinct solution for dense urban transportation through the use of electric vertical take-off and landing (eVTOL) aircraft and unmanned aerial vehicles (UAVs), despite not being the first technological development in transportation. This study aims to understand society's perspective on this innovative concept by analysing its benefits and challenges. A total of 518 individuals living in Ankara and Istanbul, which are the provinces with the highest population density in Türkiye, were surveyed online as part of this research. The analysis results indicate that the system is perceived as beneficial by the public, particularly in emergency situations, where its usage receives general acceptance. However, significant challenges are observed in terms of integrating UAM into the existing airspace. Moreover, variations in the level of benefit based on gender and frequency of public transportation usage, as well as differences in the level of challenge based on age, have been identified. Furthermore, it is evident that there are differences in society regarding knowledge level, attitude, and willingness to use UAM.

References

  • AAM International. (2022). Ehang AAV Begins Trial Operations for Spanish National Police. Retrieved from https://www.aaminternational.com/2022/12/ehang-aav-begins-trial-operations-for-spanish-national-police/ (Accessed: 05.07.2023)
  • Al Haddad, C., Chaniotakis, E., Straubinger, A., Plötner, K., & Antoniou, C. (2020). Factors affecting the adoption and use of urban air mobility. Transportation research part A: policy and practice, 132, 696-712.
  • Amazon. (2023). Amazon Prime Air Prepares for Drone Deliveries. Retrieved from https://www.aboutamazon. com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries (Accessed: 05.07.2023)
  • Aviation Week. (2023). Ehang Climbs to No. 2 on AAM Reality Index. Retrieved from https://aviationweek.com/aerospace/advanced-air-mobility/ehang-climbs-no-2-aam-reality-index (Accessed: 05.07.2023)
  • Balac, M. (2021). The market potential of Urban Air Mobility in the USA: Analysis based on open-data. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (pp. 1419-1424). IEEE.
  • Bauranov, A., & Rakas, J. (2021). Designing airspace for urban air mobility: A review of concepts and approaches. Progress in Aerospace Sciences, 125, 100726.
  • Boeing NeXt. (2019). Boeing Autonomous Passenger Air Vehicle Completes First Flight. Retrieved from https://boeing.mediaroom.com/2019-01-23-Boeing-Autonomous-Passenger-Air-Vehicle-Completes-First- Flight (Accessed: 05.07.2023)
  • Böhler, J. E., Schaepman, M. E., & Kneubühler, M. (2018). Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data. Remote Sensing, 10(8), 1282.
  • Bulusu, V. (2019). Urban air mobility: Deconstructing the next revolution in urban transportation-feasibility, capacity and productivity. University of California, Berkeley. Available at: https://escholarship.org/uc/item/2w60q8tb (Accessed: 13.05.2023)
  • Cetin, E., Barrado, C., & Pastor, E. (2020). Counter a Drone in a Complex Neighborhood Area by Deep Reinforcement Learning. Sensors, 20(8), 2320.
  • Chakraborty, A., Brink, K. M., & Sharma, R. (2020). Cooperative Relative Localization Using Range Measurements Without a Priori Information. Ieee Access, 8, 205669-205684.
  • Cohen, A. P., Shaheen, S. A., & Farrar, E. M. (2021). Urban air mobility: History, ecosystem, market potential, and challenges. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6074-6087.
  • Cokorilo, O. (2020). Urban air mobility: safety challenges. Transportation research procedia, 45, 21-29.
  • Çetin, E., Cano, A., Deransy, R., Tres, S., & Barrado, C. (2022). Implementing mitigations for improving societal acceptance of urban air mobility. Drones, 6(2), 28.
  • Donateo, T., & Çinar, H. (2022). Conceptual design and sizing optimization based on minimum energy consumption of lift-cruise type eVTOL aircraft powered by battery and fuel cell for urban air mobility. Journal of Physics Conference Series, 2385(1), 012072.
  • Donateo, T., Ficarella, A., & Surdo, L. (2022). Energy consumption and environmental impact of Urban Air Mobility. In IOP conference series: materials science and engineering (Vol. 1226, No. 1, p. 012065). IOP Publishing.
  • Ecke, Simon et al. (2022). UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sensing, 14(13), 3205.
  • eVTOL Insights. (2022, July). Flying Taxis Beyond Paris: Onwards to L.A. (Part 4). Retrieved from https://evtolinsights.com/2022/07/flying-taxis-beyond-paris-onwards-to-l-a-part-4/ (Accessed: 05.07.2023)
  • eVTOL News. (2023). Kitty Hawk Prototype. Retrieved from https://evtol.news/kitty-hawk-prototype (Accessed: 05.07.2023)
  • Flores-Caballero, G., Rodríguez-Molina, A., Aldape-Pérez, M., & Villarreal-Cervantes, M. G.. (2020). Optimized Path-Planning in Continuous Spaces for Unmanned Aerial Vehicles Using Meta-Heuristics. Ieee Access, 8, 176774-176788.
  • Future Flight. (2023). Quiet eVTOL Flights Will Be Benchmark for Olympic Gold at Paris 2024 Games. Retrieved from https://www.futureflight.aero/news-article/2022-04-15/quiet-evtol-flights-will-be-benchmark-olympic- gold-paris-2024-games (Accessed: 05.07.2023)
  • Garrow, L. A., German, B. J., & Leonard, C. E. (2021). Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transportation Research Part C: Emerging Technologies, 132, 103377.
  • Grzegorz, R., Bocewicz, G., Bogdan, D., & Banaszak, Z. (2021). Reactive Planning-Driven Approach to Online UAVs Mission Rerouting and Rescheduling. Applied Sciences, 11(19), 8898.
  • Gupta, T., Arena, F., & You, I. (2020). Efficient Resource Allocation for Backhaul-Aware Unmanned Air Vehicles-to- Everything (U2X). Sensors, 20(10), 2994.
  • Hann, Richard et al. (2021). Experimental Heat Loads for Electrothermal Anti-Icing and De-Icing on UAVs. Aerospace, 8(3), 83.
  • Helihub. (2021). Volocopter flies at Paris Air Forum. Retrieved from https://helihub.com/2021/06/23/ volocopter- flies-at-paris-air-forum/ (Accessed: 05.07. 2023)
  • Hogreve, J., & Janotta, F. (2021). What Drives the Acceptance of Urban Air Mobility–A Qualitative Analysis. In Künstliche Intelligenz im Dienstleistungsmanagement: Band 2: Einsatzfelder–Akzeptanz–Kundeninteraktionen (pp. 385-408). Wiesbaden: Springer Fachmedien Wiesbaden.
  • Hu, Y., & Yang, G. (2022). Internal Ballistic Modeling and Simulation Analysis of High-low Pressure Low-overload Launch of Unmanned Aircraft. Journal of Physics Conference Series, 2381(1), 012095.
  • Huang, H., Savkin, A. V., & Li, X. (2020). Reactive Autonomous Navigation of UAVs for Dynamic Sensing Coverage of Mobile Ground Targets. Sensors, 20(13), 3720.
  • Jiang, X., Tang, Y., Tang, Z., Cao, J., Bulusu, V., Poliziani, C., & Sengupta, R. (2023). Simulating the Integration of Urban Air Mobility into Existing Transportation Systems: A Survey. arXiv preprint arXiv:2301.12901.
  • Jordan, A., Jaskowska, K. K., Monsalve, A., Yang, R., Rozenblat, M., Freeman, K., & Garcia, S. (2022). Systematic Evaluation of Cybersecurity Risks in the Urban Air Mobility Operational Environment. In 2022 Integrated Communication, Navigation and Surveillance Conference (ICNS) (pp. 1-15). IEEE.
  • Kaoy, N. A., Lesmini, L., & Budiman, T. (2020). CUSTOMERS’ACCEPTANCE IN USING UNMANNED AERIAL VEHICLES (UAV) DELIVERY SERVICE. Advances in Transportation and Logistics Research, 3, 629-634.
  • Koumoutsidi, A., Pagoni, I., & Polydoropoulou, A. (2022). A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility. Sustainability, 14(5), 3128.
  • Lee, Seong, Joon et al. (2019). UAV Flight and Landing Guidance System for Emergency Situations †. Sensors, 19(20), 4468.
  • Li, K., Sun, C. Q., & Li, N. (2020). Distance and Visual Angle of Line-of-Sight of a Small Drone. Applied Sciences, 10(16), 5501. https://doi.org/10.3390/app10165501
  • Li, Z., Zhao, W., & Liu, C. (2022). Completion Time Minimization for UAV-UGV-Enabled Data Collection. Sensors, 22(15), 5839.
  • Liang, Y., Chin, P., Sun, Y., & Wang, M. (2021). Design and Manufacture of Composite Landing Gear for a Light Unmanned Aerial Vehicle. Applied Sciences, 11(2), 509.
  • Luque-Vega, F., Luis et al. (2022). UAV-Based Smart Educational Mechatronics System Using a MoCap Laboratory and Hardware-in-the-Loop. Sensors, 22(15), 5707.
  • Mahmoud, S. H., Mohamed, N., & Al-Jaroodi, J. (2015). Integrating UAVs into the Cloud Using the Concept of the Web of Things. Journal of Robotics, 2015, 1-10.
  • Marzouk, O. A. (2022). Urban air mobility and flying cars: Overview, examples, prospects, drawbacks, and solutions. Open Engineering, 12(1), 662-679.
  • Mavraj, G., Eltgen, J., Fraske, T., Swaid, M., Berling, J., Röntgen, O., Fu, Y. & Schulz, D. (2022). A Systematic Review of Ground-Based Infrastructure for the Innovative Urban Air Mobility. Transactions on Aerospace Research, 2022(4), 1-17.
  • Mohan, Midhun et al. (2021). UAV-Supported Forest Regeneration: Current Trends, Challenges and Implications. Remote Sensing, 13(13), 2596.
  • Nguyen, T. V. (2020). Dynamic Delegated Corridors and 4D Required Navigation Performance for Urban Air Mobility (UAM) Airspace Integration. The Journal of Aviation/Aerospace Education and Research.
  • Nikitas, A., Thomopoulos, N., & Stead, D. (2021). The Environmental and Resource Dimensions of Automated Transport: A Nexus for Enabling Vehicle Automation to Support Sustainable Urban Mobility. Annual Review of Environment and Resources, 46(1), 167-192.
  • Postorino, M. N., & Sarné, G. M. (2020). Reinventing mobility paradigms: Flying car scenarios and challenges for urban mobility. Sustainability, 12(9), 3581.
  • Poudel, S., & Moh, S. (2020). Energy-Efficient and Fast MAC Protocol in UAV-Aided Wireless Sensor Networks for Time-Critical Applications. Sensors, 20(9), 2635.
  • Pukhova, A., Llorca, C., Moreno, A., Staves, C., Zhang, Q., & Moeckel, R. (2021). Flying taxis revived: Can Urban air mobility reduce road congestion? Journal of Urban Mobility, 1, 100002.
  • Reiche, C., Cohen, A. P., & Fernando, C. (2021). An initial assessment of the potential weather barriers of urban air mobility. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6018-6027.
  • Retail Dive. (2023). Google's Project Wing drone bet hits stiff headwinds. Retrieved from https://www.retaildive.com/news/googles-project-wing-drone-bet-hits-stiff-headwinds/430019/ (Accessed: 05.07.2023)
  • Rizzi, S., & Rafaelof, M. (2021). Community noise assessment of urban air mobility vehicle operations using the FAA Aviation Environmental Design Tool. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 263, No. 6, pp. 450-461). Institute of Noise Control Engineering.
  • Rodríguez, M. S. G., Melgar, S. J. G., Cordero, A. G., & Márquez, J. A. C. (2021). A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Applied Sciences, 11(21), 9966.
  • Rowedder, C. (2019). Urban Air Mobility–Herausforderungen und Chancen für Lufttaxis. In XXXVIII. Internationales μ-Symposium 2019 Bremsen-Fachtagung: XXXVIII. International μ-Symposium 2019 Brake Conference October 25th 2019, Düsseldorf/Germany Held by TMD Friction EsCo GmbH, Leverkusen (pp. 49-54). Springer Berlin Heidelberg.
  • Saeed, N., Al-Naffouri, T. Y., & Alouini, M. (2021). Wireless Communication for Flying Cars. Frontiers in Communications and Networks, 2.
  • Scheff, S., Friedman-Berg, F., Shively, J., & Carter, A. (2020). Human factors challenges in urban air mobility. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 64, No. 1, pp. 179-182). Sage CA: Los Angeles, CA: SAGE Publications.
  • Shaheen, S., Cohen, A., & Farrar, E. (2018). The potential societal barriers of urban air mobility (UAM).
  • Straubinger, A., Rothfeld, R., Shamiyeh, M., Büchter, K. D., Kaiser, J., & Plötner, K. O. (2020). An overview of current research and developments in urban air mobility–Setting the scene for UAM introduction. Journal of Air Transport Management, 87, 101852.
  • Sun, X., Andoh, E. A., & Yu, H. (2021). A simulation-based analysis for effective distribution of COVID-19 vaccines: A case study in Norway. Transportation Research Interdisciplinary Perspectives, 11, 100453.
  • Takacs, A., & Haidegger, T. (2022). Infrastructural requirements and regulatory challenges of a sustainable urban air mobility ecosystem. Buildings, 12(6), 747.
  • Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, H. J., and Kenneth, H., et al. (2018). Urban air mobility airspace integration concepts and considerations. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3676).
  • TUİK. (2023a). Address Based Population Registration System Results, 2022. Retrieved from https://data.tuik.gov.tr/Bulten/Index?p=49685 (Accessed: 13.05.2023)
  • TUİK. (2023b). The Elderly Population Statistics, 2022. Retrieved from https://data.tuik.gov.tr/Bulten/Index?p=/ C4/B0statistiklerle-Ya/C5/9Fl/C4/B1lar-2022-49667& dil=1# (Accessed: 13.05.2023)
  • Tuncal, A., & Uslu, S. (2021). Two Important Factors in the Development of the Urban Air Mobility Concept: ATM and Society. KMU Journal of Social and Economic Research, 23(41), 564-577.
  • Urban Movement Labs. (2022). Integrating Advanced Air Mobility: A Primer for Cities. Retrieved from https://urbanmovementlabs.org/publications/#reports (Accessed: 05.07.2023)
  • Vascik, P. D., Balakrishnan, H., & Hansman, R. J. (2018). Assessment of air traffic control for urban air mobility and unmanned systems. Available at: https://dspace.mit.edu/handle/1721.1/117686 (Accessed: 13.05.2023)
  • Wu, Z., & Zhang, Y. (2020). Exploration of On-Demand Urban Air Mobility: Network Design, Operation Scheduling and Uncertainty Considerations. In 2020 International Conference for Research In Air Transportation.
  • Wu, Z., & Zhang, Y. (2021). Integrated network design and demand forecast for on-demand urban air mobility. Engineering, 7(4), 473-487.
  • Xia, T., & He, J. (2022). An Identity Authentication Scheme Based on SM2 Algorithm in UAV Communication Network. Communications and Mobile Computing, 2022, 1-10.
  • Xu, C., Liao, X., Tan, J., Ye, H., & Lu, H. (2020). Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude. Ieee Access, 8, 74175-74194.
  • Yedavalli, P. & Mooberry, J. (2019). “An assessment of public perception of urban air mobility (UAM)” Airbus, Leiden, The Netherlands, Tech. Rep., [Online]. Available at: https://storage.googleapis.com/blueprint/AirbusUTM_Full_Community_PerceptionStudy.pdf (Accessed: 13.05.2023)
  • Yu, G., Ding, X., & Liu, S. (2022). Joint Resource Management and Trajectory Optimization for UAV-Enabled Maritime Network. Sensors, 22(24), 9763.
  • Yuan, Jinbiao et al. (2022). Global Optimization of UAV Area Coverage Path Planning Based on Good Point Set and Genetic Algorithm. Aerospace, 9(2), 86.
Year 2023, Volume: 7 Issue: 3, 353 - 364, 15.11.2023
https://doi.org/10.30518/jav.1324997

Abstract

References

  • AAM International. (2022). Ehang AAV Begins Trial Operations for Spanish National Police. Retrieved from https://www.aaminternational.com/2022/12/ehang-aav-begins-trial-operations-for-spanish-national-police/ (Accessed: 05.07.2023)
  • Al Haddad, C., Chaniotakis, E., Straubinger, A., Plötner, K., & Antoniou, C. (2020). Factors affecting the adoption and use of urban air mobility. Transportation research part A: policy and practice, 132, 696-712.
  • Amazon. (2023). Amazon Prime Air Prepares for Drone Deliveries. Retrieved from https://www.aboutamazon. com/news/transportation/amazon-prime-air-prepares-for-drone-deliveries (Accessed: 05.07.2023)
  • Aviation Week. (2023). Ehang Climbs to No. 2 on AAM Reality Index. Retrieved from https://aviationweek.com/aerospace/advanced-air-mobility/ehang-climbs-no-2-aam-reality-index (Accessed: 05.07.2023)
  • Balac, M. (2021). The market potential of Urban Air Mobility in the USA: Analysis based on open-data. In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) (pp. 1419-1424). IEEE.
  • Bauranov, A., & Rakas, J. (2021). Designing airspace for urban air mobility: A review of concepts and approaches. Progress in Aerospace Sciences, 125, 100726.
  • Boeing NeXt. (2019). Boeing Autonomous Passenger Air Vehicle Completes First Flight. Retrieved from https://boeing.mediaroom.com/2019-01-23-Boeing-Autonomous-Passenger-Air-Vehicle-Completes-First- Flight (Accessed: 05.07.2023)
  • Böhler, J. E., Schaepman, M. E., & Kneubühler, M. (2018). Crop Classification in a Heterogeneous Arable Landscape Using Uncalibrated UAV Data. Remote Sensing, 10(8), 1282.
  • Bulusu, V. (2019). Urban air mobility: Deconstructing the next revolution in urban transportation-feasibility, capacity and productivity. University of California, Berkeley. Available at: https://escholarship.org/uc/item/2w60q8tb (Accessed: 13.05.2023)
  • Cetin, E., Barrado, C., & Pastor, E. (2020). Counter a Drone in a Complex Neighborhood Area by Deep Reinforcement Learning. Sensors, 20(8), 2320.
  • Chakraborty, A., Brink, K. M., & Sharma, R. (2020). Cooperative Relative Localization Using Range Measurements Without a Priori Information. Ieee Access, 8, 205669-205684.
  • Cohen, A. P., Shaheen, S. A., & Farrar, E. M. (2021). Urban air mobility: History, ecosystem, market potential, and challenges. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6074-6087.
  • Cokorilo, O. (2020). Urban air mobility: safety challenges. Transportation research procedia, 45, 21-29.
  • Çetin, E., Cano, A., Deransy, R., Tres, S., & Barrado, C. (2022). Implementing mitigations for improving societal acceptance of urban air mobility. Drones, 6(2), 28.
  • Donateo, T., & Çinar, H. (2022). Conceptual design and sizing optimization based on minimum energy consumption of lift-cruise type eVTOL aircraft powered by battery and fuel cell for urban air mobility. Journal of Physics Conference Series, 2385(1), 012072.
  • Donateo, T., Ficarella, A., & Surdo, L. (2022). Energy consumption and environmental impact of Urban Air Mobility. In IOP conference series: materials science and engineering (Vol. 1226, No. 1, p. 012065). IOP Publishing.
  • Ecke, Simon et al. (2022). UAV-Based Forest Health Monitoring: A Systematic Review. Remote Sensing, 14(13), 3205.
  • eVTOL Insights. (2022, July). Flying Taxis Beyond Paris: Onwards to L.A. (Part 4). Retrieved from https://evtolinsights.com/2022/07/flying-taxis-beyond-paris-onwards-to-l-a-part-4/ (Accessed: 05.07.2023)
  • eVTOL News. (2023). Kitty Hawk Prototype. Retrieved from https://evtol.news/kitty-hawk-prototype (Accessed: 05.07.2023)
  • Flores-Caballero, G., Rodríguez-Molina, A., Aldape-Pérez, M., & Villarreal-Cervantes, M. G.. (2020). Optimized Path-Planning in Continuous Spaces for Unmanned Aerial Vehicles Using Meta-Heuristics. Ieee Access, 8, 176774-176788.
  • Future Flight. (2023). Quiet eVTOL Flights Will Be Benchmark for Olympic Gold at Paris 2024 Games. Retrieved from https://www.futureflight.aero/news-article/2022-04-15/quiet-evtol-flights-will-be-benchmark-olympic- gold-paris-2024-games (Accessed: 05.07.2023)
  • Garrow, L. A., German, B. J., & Leonard, C. E. (2021). Urban air mobility: A comprehensive review and comparative analysis with autonomous and electric ground transportation for informing future research. Transportation Research Part C: Emerging Technologies, 132, 103377.
  • Grzegorz, R., Bocewicz, G., Bogdan, D., & Banaszak, Z. (2021). Reactive Planning-Driven Approach to Online UAVs Mission Rerouting and Rescheduling. Applied Sciences, 11(19), 8898.
  • Gupta, T., Arena, F., & You, I. (2020). Efficient Resource Allocation for Backhaul-Aware Unmanned Air Vehicles-to- Everything (U2X). Sensors, 20(10), 2994.
  • Hann, Richard et al. (2021). Experimental Heat Loads for Electrothermal Anti-Icing and De-Icing on UAVs. Aerospace, 8(3), 83.
  • Helihub. (2021). Volocopter flies at Paris Air Forum. Retrieved from https://helihub.com/2021/06/23/ volocopter- flies-at-paris-air-forum/ (Accessed: 05.07. 2023)
  • Hogreve, J., & Janotta, F. (2021). What Drives the Acceptance of Urban Air Mobility–A Qualitative Analysis. In Künstliche Intelligenz im Dienstleistungsmanagement: Band 2: Einsatzfelder–Akzeptanz–Kundeninteraktionen (pp. 385-408). Wiesbaden: Springer Fachmedien Wiesbaden.
  • Hu, Y., & Yang, G. (2022). Internal Ballistic Modeling and Simulation Analysis of High-low Pressure Low-overload Launch of Unmanned Aircraft. Journal of Physics Conference Series, 2381(1), 012095.
  • Huang, H., Savkin, A. V., & Li, X. (2020). Reactive Autonomous Navigation of UAVs for Dynamic Sensing Coverage of Mobile Ground Targets. Sensors, 20(13), 3720.
  • Jiang, X., Tang, Y., Tang, Z., Cao, J., Bulusu, V., Poliziani, C., & Sengupta, R. (2023). Simulating the Integration of Urban Air Mobility into Existing Transportation Systems: A Survey. arXiv preprint arXiv:2301.12901.
  • Jordan, A., Jaskowska, K. K., Monsalve, A., Yang, R., Rozenblat, M., Freeman, K., & Garcia, S. (2022). Systematic Evaluation of Cybersecurity Risks in the Urban Air Mobility Operational Environment. In 2022 Integrated Communication, Navigation and Surveillance Conference (ICNS) (pp. 1-15). IEEE.
  • Kaoy, N. A., Lesmini, L., & Budiman, T. (2020). CUSTOMERS’ACCEPTANCE IN USING UNMANNED AERIAL VEHICLES (UAV) DELIVERY SERVICE. Advances in Transportation and Logistics Research, 3, 629-634.
  • Koumoutsidi, A., Pagoni, I., & Polydoropoulou, A. (2022). A New Mobility Era: Stakeholders’ Insights regarding Urban Air Mobility. Sustainability, 14(5), 3128.
  • Lee, Seong, Joon et al. (2019). UAV Flight and Landing Guidance System for Emergency Situations †. Sensors, 19(20), 4468.
  • Li, K., Sun, C. Q., & Li, N. (2020). Distance and Visual Angle of Line-of-Sight of a Small Drone. Applied Sciences, 10(16), 5501. https://doi.org/10.3390/app10165501
  • Li, Z., Zhao, W., & Liu, C. (2022). Completion Time Minimization for UAV-UGV-Enabled Data Collection. Sensors, 22(15), 5839.
  • Liang, Y., Chin, P., Sun, Y., & Wang, M. (2021). Design and Manufacture of Composite Landing Gear for a Light Unmanned Aerial Vehicle. Applied Sciences, 11(2), 509.
  • Luque-Vega, F., Luis et al. (2022). UAV-Based Smart Educational Mechatronics System Using a MoCap Laboratory and Hardware-in-the-Loop. Sensors, 22(15), 5707.
  • Mahmoud, S. H., Mohamed, N., & Al-Jaroodi, J. (2015). Integrating UAVs into the Cloud Using the Concept of the Web of Things. Journal of Robotics, 2015, 1-10.
  • Marzouk, O. A. (2022). Urban air mobility and flying cars: Overview, examples, prospects, drawbacks, and solutions. Open Engineering, 12(1), 662-679.
  • Mavraj, G., Eltgen, J., Fraske, T., Swaid, M., Berling, J., Röntgen, O., Fu, Y. & Schulz, D. (2022). A Systematic Review of Ground-Based Infrastructure for the Innovative Urban Air Mobility. Transactions on Aerospace Research, 2022(4), 1-17.
  • Mohan, Midhun et al. (2021). UAV-Supported Forest Regeneration: Current Trends, Challenges and Implications. Remote Sensing, 13(13), 2596.
  • Nguyen, T. V. (2020). Dynamic Delegated Corridors and 4D Required Navigation Performance for Urban Air Mobility (UAM) Airspace Integration. The Journal of Aviation/Aerospace Education and Research.
  • Nikitas, A., Thomopoulos, N., & Stead, D. (2021). The Environmental and Resource Dimensions of Automated Transport: A Nexus for Enabling Vehicle Automation to Support Sustainable Urban Mobility. Annual Review of Environment and Resources, 46(1), 167-192.
  • Postorino, M. N., & Sarné, G. M. (2020). Reinventing mobility paradigms: Flying car scenarios and challenges for urban mobility. Sustainability, 12(9), 3581.
  • Poudel, S., & Moh, S. (2020). Energy-Efficient and Fast MAC Protocol in UAV-Aided Wireless Sensor Networks for Time-Critical Applications. Sensors, 20(9), 2635.
  • Pukhova, A., Llorca, C., Moreno, A., Staves, C., Zhang, Q., & Moeckel, R. (2021). Flying taxis revived: Can Urban air mobility reduce road congestion? Journal of Urban Mobility, 1, 100002.
  • Reiche, C., Cohen, A. P., & Fernando, C. (2021). An initial assessment of the potential weather barriers of urban air mobility. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6018-6027.
  • Retail Dive. (2023). Google's Project Wing drone bet hits stiff headwinds. Retrieved from https://www.retaildive.com/news/googles-project-wing-drone-bet-hits-stiff-headwinds/430019/ (Accessed: 05.07.2023)
  • Rizzi, S., & Rafaelof, M. (2021). Community noise assessment of urban air mobility vehicle operations using the FAA Aviation Environmental Design Tool. In INTER-NOISE and NOISE-CON Congress and Conference Proceedings (Vol. 263, No. 6, pp. 450-461). Institute of Noise Control Engineering.
  • Rodríguez, M. S. G., Melgar, S. J. G., Cordero, A. G., & Márquez, J. A. C. (2021). A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Applied Sciences, 11(21), 9966.
  • Rowedder, C. (2019). Urban Air Mobility–Herausforderungen und Chancen für Lufttaxis. In XXXVIII. Internationales μ-Symposium 2019 Bremsen-Fachtagung: XXXVIII. International μ-Symposium 2019 Brake Conference October 25th 2019, Düsseldorf/Germany Held by TMD Friction EsCo GmbH, Leverkusen (pp. 49-54). Springer Berlin Heidelberg.
  • Saeed, N., Al-Naffouri, T. Y., & Alouini, M. (2021). Wireless Communication for Flying Cars. Frontiers in Communications and Networks, 2.
  • Scheff, S., Friedman-Berg, F., Shively, J., & Carter, A. (2020). Human factors challenges in urban air mobility. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 64, No. 1, pp. 179-182). Sage CA: Los Angeles, CA: SAGE Publications.
  • Shaheen, S., Cohen, A., & Farrar, E. (2018). The potential societal barriers of urban air mobility (UAM).
  • Straubinger, A., Rothfeld, R., Shamiyeh, M., Büchter, K. D., Kaiser, J., & Plötner, K. O. (2020). An overview of current research and developments in urban air mobility–Setting the scene for UAM introduction. Journal of Air Transport Management, 87, 101852.
  • Sun, X., Andoh, E. A., & Yu, H. (2021). A simulation-based analysis for effective distribution of COVID-19 vaccines: A case study in Norway. Transportation Research Interdisciplinary Perspectives, 11, 100453.
  • Takacs, A., & Haidegger, T. (2022). Infrastructural requirements and regulatory challenges of a sustainable urban air mobility ecosystem. Buildings, 12(6), 747.
  • Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, H. J., and Kenneth, H., et al. (2018). Urban air mobility airspace integration concepts and considerations. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3676).
  • TUİK. (2023a). Address Based Population Registration System Results, 2022. Retrieved from https://data.tuik.gov.tr/Bulten/Index?p=49685 (Accessed: 13.05.2023)
  • TUİK. (2023b). The Elderly Population Statistics, 2022. Retrieved from https://data.tuik.gov.tr/Bulten/Index?p=/ C4/B0statistiklerle-Ya/C5/9Fl/C4/B1lar-2022-49667& dil=1# (Accessed: 13.05.2023)
  • Tuncal, A., & Uslu, S. (2021). Two Important Factors in the Development of the Urban Air Mobility Concept: ATM and Society. KMU Journal of Social and Economic Research, 23(41), 564-577.
  • Urban Movement Labs. (2022). Integrating Advanced Air Mobility: A Primer for Cities. Retrieved from https://urbanmovementlabs.org/publications/#reports (Accessed: 05.07.2023)
  • Vascik, P. D., Balakrishnan, H., & Hansman, R. J. (2018). Assessment of air traffic control for urban air mobility and unmanned systems. Available at: https://dspace.mit.edu/handle/1721.1/117686 (Accessed: 13.05.2023)
  • Wu, Z., & Zhang, Y. (2020). Exploration of On-Demand Urban Air Mobility: Network Design, Operation Scheduling and Uncertainty Considerations. In 2020 International Conference for Research In Air Transportation.
  • Wu, Z., & Zhang, Y. (2021). Integrated network design and demand forecast for on-demand urban air mobility. Engineering, 7(4), 473-487.
  • Xia, T., & He, J. (2022). An Identity Authentication Scheme Based on SM2 Algorithm in UAV Communication Network. Communications and Mobile Computing, 2022, 1-10.
  • Xu, C., Liao, X., Tan, J., Ye, H., & Lu, H. (2020). Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude. Ieee Access, 8, 74175-74194.
  • Yedavalli, P. & Mooberry, J. (2019). “An assessment of public perception of urban air mobility (UAM)” Airbus, Leiden, The Netherlands, Tech. Rep., [Online]. Available at: https://storage.googleapis.com/blueprint/AirbusUTM_Full_Community_PerceptionStudy.pdf (Accessed: 13.05.2023)
  • Yu, G., Ding, X., & Liu, S. (2022). Joint Resource Management and Trajectory Optimization for UAV-Enabled Maritime Network. Sensors, 22(24), 9763.
  • Yuan, Jinbiao et al. (2022). Global Optimization of UAV Area Coverage Path Planning Based on Good Point Set and Genetic Algorithm. Aerospace, 9(2), 86.
There are 71 citations in total.

Details

Primary Language English
Subjects Intelligent Mobility, Air Transportation and Freight Services
Journal Section Research Articles
Authors

Ertan Çınar 0000-0002-7783-4770

Arif Tuncal 0000-0003-4343-6261

Publication Date November 15, 2023
Submission Date July 10, 2023
Acceptance Date August 26, 2023
Published in Issue Year 2023 Volume: 7 Issue: 3

Cite

APA Çınar, E., & Tuncal, A. (2023). A Comprehensive Analysis of Society’s Perspective on Urban Air Mobility. Journal of Aviation, 7(3), 353-364. https://doi.org/10.30518/jav.1324997

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence