BibTex RIS Cite
Year 2020, Volume: 4 Issue: 1, 51 - 58, 01.03.2020
https://doi.org/10.30621/jbachs.2020.899

Abstract

References

  • Baldock C, De Deene Y, Doran S, et al. Polymer gel dosimetry. Phys Med Biol 2010;55:R1–R63. [CrossRef]
  • McJury M, Oldham M, Cosgrove VP, et al. Radiation dosimetry using polymer gels: methods and applications. Br J Radiol 2000;73:919– 929. [CrossRef]
  • De Deene Y, De Wagter C, Van Duyse B, et al. Validation of MR-based polymer gel dosimetry as a preclinical three dimensional verification tool in conformal radiotherapy. Magn Reson Med 2000;43:116–125. [CrossRef]
  • Maryanski MJ, Schulz RJ, Ibbott GS, et al. Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 1994;39:1437–1455. [CrossRef]
  • Brindha S, Venning AJ, Hill B, Baldock C. Experimental study of attenuation properties of normoxic polymer gel dosimeters. Phys Med Biol 2004;49:N353–N361. [CrossRef]
  • Hill B, Venning A, Baldock C. The dose response of normoxic polymer gel dosimeters measured using X-ray CT. Br J Radiol 2005;78:623–630. [CrossRef]
  • Zahran RR, Kandeil AY, Higazy AA, Kassem ME. Ultrasonic and thermal properties of gamma irradiated low-density polyethylene. J Appl Poly Sci 1993;49:1291–1297. [CrossRef]
  • Zahran RR. Effects of gamma irradiation on the ultrasonic and structural properties of polyoxymethylene. Mater Lett 1998;37:83-89. [CrossRef]
  • Maryanski MJ, Zastavker YZ, Gore JC. Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys Med Biol 1996;41:2705. [CrossRef]
  • Oldham M, Siewerdsen JH, Shetty A, Jaffray DA. High resolution gel- dosimetry by optical-CT and MR scanning. Med Phys 2001;28:1436– 1445. [CrossRef]
  • Maryanski MJ, Ranade MK. Laser micro-beam scanning of dosimetry gels. Proc SPIE 4320 2001;764–774. [CrossRef]
  • Lepage M, Whittaker AK, Rintoul L, Back SA, Baldock C. Modelling of post-irradiation events in polymer gel dosimeters. Phys Med Biol 2001;46:2827–2839. [CrossRef]
  • Rintoul L, Lepage M, Baldock C. Radiation dose distribution in polymer gels by Raman spectroscopy. Appl Spectrosc 2003;57:51–57. [CrossRef]
  • Taylor ML, Kron T, Franich RD. A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment. Acta Oncol 2011;50:483–508. [CrossRef]
  • Sigma Aldrich. Acrylamide properties in product catalogue; 2019. http://www.sigmaaldrich.com/catalog/product/sigma/ a9099?lang=en&region=TR
  • Rogers DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 2006;51:R287–R301. [CrossRef]
  • Keall P, Kron T, Hoban P. A Monte Carlo technique to establish the water/tissue equivalence of phantom materials. Australas Phys Eng Sci Med 1993;16:125–128.
  • Hill R, Kuncic Z, Baldock C. The water equivalence of solid phantoms for low energy photon beams. Med Phys 2010;37:4355–4363. [CrossRef]
  • Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. NRC Report PIRS-0509 (A) revL, NRC, Canada; 2015. https://nrc-cnrc. github.io/EGSnrc/doc/pirs509a-beamnrc.pdf
  • Forster RA, Cox JL, Barrett FR, et al. MCNP™ Version 5. Nucl Instrum Methods Phy Res B NIMBEU 2004;213:82–86. [CrossRef]
  • Salvat F, Fernández-Varea JM, Sempau J. PENELOPE 2006 –a code system for Monte Carlo simulation of electron and photon transport; 2006. https://www.oecd-nea.org/science/pubs/2006/nea6222- penelope.pdf
  • Agostinelli S, Allison J, Amako K, et al. Geant4 – a simulation toolkit. Nucl Instrum Methods A 2003;506:250–303. [CrossRef]
  • Arce P, Banerjee S, Boccali T, et al. Simulation framework and XML detector description for the CMS experiment. Nucl Instrum Methods Phys Res A 2003;502:687–688. [CrossRef]
  • Arce P, Lagares JI, Harkness L, et al. GAMOS: A framework to do GEANT4 simulations in different physics fields with an user-friendly interface. Nucl Instrum Methods Phys Res A 2014;735:304–313. [CrossRef]
  • Senden RJ, De Jean P, McAuley KB, Schreiner LJ. Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 2006;51:3301–3314. [CrossRef]
  • Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C. Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 2005;50:3875–3888. [CrossRef]
  • Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical note: Spektr 3.0-A computational tool for x-ray spectrum modeling and analysis. Med Phys 2016;43:4711–4717. [CrossRef]
  • Venning AJ, Nitschke KN, Keall PJ, Baldock C. Radiological properties of normoxic polymer gel dosimeters. Med Phys 2005;32:1047–1052. [CrossRef]
  • Hill R, Holloway L, Baldock C. A dosimetric evaluation of water equivalent phantoms for kilovoltage X-ray beams. Phys Med Biol 2005;50:N331–N344. https://doi.org/10.1088/0031-9155/50/21/ N06 [CrossRef]
  • Gorjiara T, Hill R, Kuncic Z, et al. Investigation of radiological properties and water equivalency of PRESAGE® dosimeters. Med Phys 2011;38:2265–2274. [CrossRef]
  • Gorjiara T, Hill R, Kuncic Z, Bosi S, Davies JB, Baldock C. Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry. Phys Med Biol 2011;56:4685–4699. [CrossRef]

Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS

Year 2020, Volume: 4 Issue: 1, 51 - 58, 01.03.2020
https://doi.org/10.30621/jbachs.2020.899

Abstract

Purpose: Polymer gel materials are used as dosimeters to provide three dimensional radiation dose distribution. An ideal gel dosimeter should offer radiological properties equivalent to water. This study aims to determine and compare the water equivalencies of various new polymer gel mixtures using Geant4-based Architecture for Medicine-Oriented Simulations GAMOS software program. Methods: To do this, percentage depth dose curves of the simulated polymer gel mixtures were compared with water curves. Different combinations of materials from 2 main classes were used in the mixtures: 1 Sodium Carboxymethyl Cellulose SODIUM CMC , Polyvinyl Alcohol PVA and Polyethylene Glycol PEG as gel matrix, 2 2-Hydroxyethyl Methacrylate HEMA , 1-Vinyl-2-Pyrrolidinone VP and Diethylene Glycol Dimethacrylate DEGDMA as monomer. Each mixture also contained ultra-pure water and an antioxidant material called Tetrakis Hydroxymethyl Phosphonium Chloride THPC . Results: Percentage depth doses of gel mixtures and water was calculated for 6, 18 MV and 50, 70, 100, 150 kVp X rays. The mixture sample showing radiological behavior nearest to water over all energies was observed to be 31a Water, PEG, HEMA, THPC , while the largest difference is observed in 11a Water, SODIUM CMC, HEMA, THPC .Conclusion: As a result, simulated gel formulations were found to be radiologically water equivalent.

References

  • Baldock C, De Deene Y, Doran S, et al. Polymer gel dosimetry. Phys Med Biol 2010;55:R1–R63. [CrossRef]
  • McJury M, Oldham M, Cosgrove VP, et al. Radiation dosimetry using polymer gels: methods and applications. Br J Radiol 2000;73:919– 929. [CrossRef]
  • De Deene Y, De Wagter C, Van Duyse B, et al. Validation of MR-based polymer gel dosimetry as a preclinical three dimensional verification tool in conformal radiotherapy. Magn Reson Med 2000;43:116–125. [CrossRef]
  • Maryanski MJ, Schulz RJ, Ibbott GS, et al. Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 1994;39:1437–1455. [CrossRef]
  • Brindha S, Venning AJ, Hill B, Baldock C. Experimental study of attenuation properties of normoxic polymer gel dosimeters. Phys Med Biol 2004;49:N353–N361. [CrossRef]
  • Hill B, Venning A, Baldock C. The dose response of normoxic polymer gel dosimeters measured using X-ray CT. Br J Radiol 2005;78:623–630. [CrossRef]
  • Zahran RR, Kandeil AY, Higazy AA, Kassem ME. Ultrasonic and thermal properties of gamma irradiated low-density polyethylene. J Appl Poly Sci 1993;49:1291–1297. [CrossRef]
  • Zahran RR. Effects of gamma irradiation on the ultrasonic and structural properties of polyoxymethylene. Mater Lett 1998;37:83-89. [CrossRef]
  • Maryanski MJ, Zastavker YZ, Gore JC. Radiation dose distributions in three dimensions from tomographic optical density scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys Med Biol 1996;41:2705. [CrossRef]
  • Oldham M, Siewerdsen JH, Shetty A, Jaffray DA. High resolution gel- dosimetry by optical-CT and MR scanning. Med Phys 2001;28:1436– 1445. [CrossRef]
  • Maryanski MJ, Ranade MK. Laser micro-beam scanning of dosimetry gels. Proc SPIE 4320 2001;764–774. [CrossRef]
  • Lepage M, Whittaker AK, Rintoul L, Back SA, Baldock C. Modelling of post-irradiation events in polymer gel dosimeters. Phys Med Biol 2001;46:2827–2839. [CrossRef]
  • Rintoul L, Lepage M, Baldock C. Radiation dose distribution in polymer gels by Raman spectroscopy. Appl Spectrosc 2003;57:51–57. [CrossRef]
  • Taylor ML, Kron T, Franich RD. A contemporary review of stereotactic radiotherapy: Inherent dosimetric complexities and the potential for detriment. Acta Oncol 2011;50:483–508. [CrossRef]
  • Sigma Aldrich. Acrylamide properties in product catalogue; 2019. http://www.sigmaaldrich.com/catalog/product/sigma/ a9099?lang=en&region=TR
  • Rogers DWO. Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 2006;51:R287–R301. [CrossRef]
  • Keall P, Kron T, Hoban P. A Monte Carlo technique to establish the water/tissue equivalence of phantom materials. Australas Phys Eng Sci Med 1993;16:125–128.
  • Hill R, Kuncic Z, Baldock C. The water equivalence of solid phantoms for low energy photon beams. Med Phys 2010;37:4355–4363. [CrossRef]
  • Rogers DWO, Walters B, Kawrakow I. BEAMnrc Users Manual. NRC Report PIRS-0509 (A) revL, NRC, Canada; 2015. https://nrc-cnrc. github.io/EGSnrc/doc/pirs509a-beamnrc.pdf
  • Forster RA, Cox JL, Barrett FR, et al. MCNP™ Version 5. Nucl Instrum Methods Phy Res B NIMBEU 2004;213:82–86. [CrossRef]
  • Salvat F, Fernández-Varea JM, Sempau J. PENELOPE 2006 –a code system for Monte Carlo simulation of electron and photon transport; 2006. https://www.oecd-nea.org/science/pubs/2006/nea6222- penelope.pdf
  • Agostinelli S, Allison J, Amako K, et al. Geant4 – a simulation toolkit. Nucl Instrum Methods A 2003;506:250–303. [CrossRef]
  • Arce P, Banerjee S, Boccali T, et al. Simulation framework and XML detector description for the CMS experiment. Nucl Instrum Methods Phys Res A 2003;502:687–688. [CrossRef]
  • Arce P, Lagares JI, Harkness L, et al. GAMOS: A framework to do GEANT4 simulations in different physics fields with an user-friendly interface. Nucl Instrum Methods Phys Res A 2014;735:304–313. [CrossRef]
  • Senden RJ, De Jean P, McAuley KB, Schreiner LJ. Polymer gel dosimeters with reduced toxicity: a preliminary investigation of the NMR and optical dose–response using different monomers. Phys Med Biol 2006;51:3301–3314. [CrossRef]
  • Venning AJ, Hill B, Brindha S, Healy BJ, Baldock C. Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys Med Biol 2005;50:3875–3888. [CrossRef]
  • Punnoose J, Xu J, Sisniega A, Zbijewski W, Siewerdsen JH. Technical note: Spektr 3.0-A computational tool for x-ray spectrum modeling and analysis. Med Phys 2016;43:4711–4717. [CrossRef]
  • Venning AJ, Nitschke KN, Keall PJ, Baldock C. Radiological properties of normoxic polymer gel dosimeters. Med Phys 2005;32:1047–1052. [CrossRef]
  • Hill R, Holloway L, Baldock C. A dosimetric evaluation of water equivalent phantoms for kilovoltage X-ray beams. Phys Med Biol 2005;50:N331–N344. https://doi.org/10.1088/0031-9155/50/21/ N06 [CrossRef]
  • Gorjiara T, Hill R, Kuncic Z, et al. Investigation of radiological properties and water equivalency of PRESAGE® dosimeters. Med Phys 2011;38:2265–2274. [CrossRef]
  • Gorjiara T, Hill R, Kuncic Z, Bosi S, Davies JB, Baldock C. Radiological characterization and water equivalency of genipin gel for x-ray and electron beam dosimetry. Phys Med Biol 2011;56:4685–4699. [CrossRef]
There are 31 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Türkan Özbay

Ayşegül Yurt This is me

İsmail Özsoykal This is me

Publication Date March 1, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Özbay, T., Yurt, A., & Özsoykal, İ. (2020). Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS. Journal of Basic and Clinical Health Sciences, 4(1), 51-58. https://doi.org/10.30621/jbachs.2020.899
AMA Özbay T, Yurt A, Özsoykal İ. Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS. JBACHS. March 2020;4(1):51-58. doi:10.30621/jbachs.2020.899
Chicago Özbay, Türkan, Ayşegül Yurt, and İsmail Özsoykal. “Simulation of Water Equivalency of Polymer Gel Dosimeters With GAMOS”. Journal of Basic and Clinical Health Sciences 4, no. 1 (March 2020): 51-58. https://doi.org/10.30621/jbachs.2020.899.
EndNote Özbay T, Yurt A, Özsoykal İ (March 1, 2020) Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS. Journal of Basic and Clinical Health Sciences 4 1 51–58.
IEEE T. Özbay, A. Yurt, and İ. Özsoykal, “Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS”, JBACHS, vol. 4, no. 1, pp. 51–58, 2020, doi: 10.30621/jbachs.2020.899.
ISNAD Özbay, Türkan et al. “Simulation of Water Equivalency of Polymer Gel Dosimeters With GAMOS”. Journal of Basic and Clinical Health Sciences 4/1 (March 2020), 51-58. https://doi.org/10.30621/jbachs.2020.899.
JAMA Özbay T, Yurt A, Özsoykal İ. Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS. JBACHS. 2020;4:51–58.
MLA Özbay, Türkan et al. “Simulation of Water Equivalency of Polymer Gel Dosimeters With GAMOS”. Journal of Basic and Clinical Health Sciences, vol. 4, no. 1, 2020, pp. 51-58, doi:10.30621/jbachs.2020.899.
Vancouver Özbay T, Yurt A, Özsoykal İ. Simulation of Water Equivalency of Polymer Gel Dosimeters with GAMOS. JBACHS. 2020;4(1):51-8.

Cited By