Research Article
BibTex RIS Cite
Year 2021, Volume: 5 Issue: 2, 65 - 72, 27.05.2021
https://doi.org/10.30621/jbachs.904035

Abstract

Supporting Institution

Yok

Project Number

Yok

Thanks

Yok

References

  • 1. Davidoff RA. The pyramidal tract. Neurology. 1990;40(2):332-9.
  • 2. Nyberg-Hansen R. ["The pyramidal tract syndrome" in man in the light of experimental investigations]. Tidsskr Nor Laegeforen. 1968;88(1):8-14.
  • 3. Verhaart WJ. The pyramidal tract. Its structure and functions in man and animals. World Neurol. 1962;3:43-53.
  • 4. Heffner RS, Masterton RB. The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol. 1983;23(3-4):165-83.
  • 5. York DH. Review of descending motor pathways involved with transcranial stimulation. Neurosurgery. 1987;20(1):70-3.
  • 6. Natali AL, Reddy V, Bordoni B. Neuroanatomy, Corticospinal Cord Tract. StatPearls. Treasure Island (FL)2020.
  • 7. Seo JP, Jang SH. Different characteristics of the corticospinal tract according to the cerebral origin: DTI study. AJNR Am J Neuroradiol. 2013;34(7):1359-63.
  • 8. Galea MP, Darian-Smith I. Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex. 1994;4(2):166-94.
  • 9. Lemon RN, Maier MA, Armand J, Kirkwood PA, Yang HW. Functional differences in corticospinal projections from macaque primary motor cortex and supplementary motor area. Adv Exp Med Biol. 2002;508:425-34.
  • 10. Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex. 2002;12(3):281-96.
  • 11. Russell JR, Demyer W. The quantitative corticoid origin of pyramidal axons of Macaca rhesus. With some remarks on the slow rate of axolysis. Neurology. 1961;11:96-108.
  • 12. Toyoshima K, Sakai H. Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey. J Hirnforsch. 1982;23(3):257-69.
  • 13. Chenot Q, Tzourio-Mazoyer N, Rheault F, Descoteaux M, Crivello F, Zago L, et al. A population-based atlas of the human pyramidal tract in 410 healthy participants. Brain Struct Funct. 2019;224(2):599-612.
  • 14. Frey D, Strack V, Wiener E, Jussen D, Vajkoczy P, Picht T. A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage. 2012;62(3):1600-9.
  • 15. Holodny AI, Gor DM, Watts R, Gutin PH, Ulug AM. Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology. 2005;234(3):649-53.
  • 16. Kunimatsu A, Aoki S, Masutani Y, Abe O, Hayashi N, Mori H, et al. The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci. 2004;3(1):11-7.
  • 17. Lee DH, Lee DW, Han BS. Topographic organization of motor fibre tracts in the human brain: findings in multiple locations using magnetic resonance diffusion tensor tractography. Eur Radiol. 2016;26(6):1751-9.
  • 18. O. AM. An Essay on the Human Corticospinal Tract: History, Development, Anatomy, and Connections. Neuroanatomy. 2011;10:1-4.
  • 19. Reich DS, Smith SA, Jones CK, Zackowski KM, van Zijl PC, Calabresi PA, et al. Quantitative characterization of the corticospinal tract at 3T. AJNR Am J Neuroradiol. 2006;27(10):2168-78.
  • 20. Verstynen T, Jarbo K, Pathak S, Schneider W. In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol. 2011;105(1):336-46.
  • 21. Otomo A, Pan L, Hadano S. Dysregulation of the autophagy-endolysosomal system in amyotrophic lateral sclerosis and related motor neuron diseases. Neurol Res Int. 2012;2012:498428.
  • 22. Durand J, Amendola J, Bories C, Lamotte d'Incamps B. Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. J Physiol Paris. 2006;99(2-3):211-20.
  • 23. J. K. Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 1935;36:247–56.
  • 24. Javed K, Reddy V, Lui F. Neuroanatomy, Lateral Corticospinal Tract. StatPearls. Treasure Island (FL)2021.
  • 25. Yagmurlu K, Rhoton AL, Jr., Tanriover N, Bennett JA. Three-dimensional microsurgical anatomy and the safe entry zones of the brainstem. Neurosurgery. 2014;10 Suppl 4:602-19; discussion 19-20.
  • 26. Bozkurt B, Yagmurlu K, Middlebrooks EH, Karadag A, Ovalioglu TC, Jagadeesan B, et al. Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Humans. World Neurosurg. 2016;95:99-107.
  • 27. Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, et al. Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. AJNR Am J Neuroradiol. 2009;30(10):1963-70.
  • 28. Biceroglu H, Karadag A. Neuroanatomical Aspects of the Temporo-Parieto-Occipital Junction and New Surgical Strategy to Preserve the Associated Tracts in Junctional Lesion Surgery: Fiber Separation Technique. Turk Neurosurg. 2019;29(6):864-74.
  • 29. Kretschmann HJ. Localisation of the corticospinal fibres in the internal capsule in man. J Anat. 1988;160:219-25.
  • 30. Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol. 2017;77(7):810-29.
  • 31. Ebeling U, Reulen HJ. Subcortical topography and proportions of the pyramidal tract. Acta Neurochir (Wien). 1992;118(3-4):164-71.
  • 32. Englander RN, Netsky MG, Adelman LS. Location of human pyramidal tract in the internal capsule: anatomic evidence. Neurology. 1975;25(9):823-6.
  • 33. Ross ED. Localization of the pyramidal tract in the internal capsule by whole brain dissection. Neurology. 1980;30(1):59-64.
  • 34. Sullivan EV, Zahr NM, Rohlfing T, Pfefferbaum A. Fiber tracking functionally distinct components of the internal capsule. Neuropsychologia. 2010;48(14):4155-63.
  • 35. Seo JP, Jang SH. Characteristics of corticospinal tract area according to pontine level. Yonsei Med J. 2013;54(3):785-7.
  • 36. Jang SH. The role of the corticospinal tract in motor recovery in patients with a stroke: a review. NeuroRehabilitation. 2009;24(3):285-90.
  • 37. Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 1990;113 ( Pt 2):303-24.
  • 38. Jang SH. The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med. 2014;46(3):193-9.
  • 39. Karadag A, Senoglu M, Middlebrooks EH, Kinali B, Guvencer M, Icke C, et al. Endoscopic endonasal transclival approach to the ventral brainstem: Radiologic, anatomic feasibility and nuances, surgical limitations and future directions. J Clin Neurosci. 2020;73:264-79.
  • 40. Fulton JF, Sheehan D. The Uncrossed Lateral Pyramidal Tract in Higher Primates. J Anat. 1935;69(Pt 2):181-7.
  • 41. Nyberg‐Hansen R, Rinvik E. Some comments on the pyramidal tract, with special reference to its individual variations in man. Acta Neurol Scand. 1963;39:1-30.
  • 42. Cho SH, Kim SH, Choi BY, Cho SH, Kang JH, Lee CH, et al. Motor outcome according to diffusion tensor tractography findings in the early stage of intracerebral hemorrhage. Neurosci Lett. 2007;421(2):142-6.
  • 43. Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S. Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res. 2004;143:239-49.
  • 44. Nudo RJ, Masterton RB. Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract. J Comp Neurol. 1990;296(4):559-83.
  • 45. Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461-74.
  • 46. Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke. 2007;38(3):1088-90.
  • 47. Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review. Front Neurol. 2019;10:1188.
  • 48. Nudo RJ, Masterton RB. Descending pathways to the spinal cord: II. Quantitative study of the tectospinal tract in 23 mammals. J Comp Neurol. 1989;286(1):96-119.
  • 49. Reynolds N, Al Khalili Y. Neuroanatomy, Tectospinal Tract. StatPearls. Treasure Island (FL)2020.
  • 50. G. S, C. W. Spinal Cord: Connections. The Human Nervous System(3rd edition). 2012;Chapter 7 233-58.
  • 51. Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One. 2009;4(8):e6623.
  • 52. ten Donkelaar HJ. Evolution of the red nucleus and rubrospinal tract. Behav Brain Res. 1988;28(1-2):9-20.
  • 53. Rajagopalan V, Pioro EP. Differential involvement of corticospinal tract (CST) fibers in UMN-predominant ALS patients with or without CST hyperintensity: A diffusion tensor tractography study. Neuroimage Clin. 2017;14:574-9.
  • 54. Yin H, Cheng SH, Zhang J, Ma L, Gao Y, Li D, et al. Corticospinal tract degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging and fibre tractography study. Ann Acad Med Singapore. 2008;37(5):411-5.
  • 55. Eisen A. Amyotrophic lateral sclerosis is a multifactorial disease. Muscle Nerve. 1995;18(7):741-52.
  • 56. Leigh PN, Ray-Chaudhuri K. Motor neuron disease. J Neurol Neurosurg Psychiatry. 1994;57(8):886-96.
  • 57. Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, et al. Identification of potential CSF biomarkers in ALS. Neurology. 2006;66(8):1218-22.
  • 58. Appel SH. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol. 1981;10(6):499-505.
  • 59. Plaitakis A, Constantakakis E, Smith J. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol. 1988;24(3):446-9.
  • 60. Chen H, Guo Y, Hu M, Duan W, Chang G, Li C. Differential expression and alternative splicing of genes in lumbar spinal cord of an amyotrophic lateral sclerosis mouse model. Brain Res. 2010;1340:52-69.
  • 61. Chou SM, Norris FH. Amyotrophic lateral sclerosis: lower motor neuron disease spreading to upper motor neurons. Muscle Nerve. 1993;16(8):864-9.
  • 62. Eisen AA. Comment on the lower motor neuron hypothesis. Muscle Nerve. 1993;16(8):870-1.
  • 63. Jang SH, Seo JP. Aging of corticospinal tract fibers according to the cerebral origin in the human brain: a diffusion tensor imaging study. Neurosci Lett. 2015;585:77-81.
  • 64. Mascalchi M, Salvi F, Valzania F, Marcacci G, Bartolozzi C, Tassinari CA. Corticospinal tract degeneration in motor neuron disease. AJNR Am J Neuroradiol. 1995;16(4 Suppl):878-80.
  • 65. Yin H, Cheng SH, Zhang J, Ma L, Gao Y, Li D, et al. Corticospinal tract degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging and fibre tractography study. Ann Acad Med Singap. 2008;37(5):411-5.

Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection

Year 2021, Volume: 5 Issue: 2, 65 - 72, 27.05.2021
https://doi.org/10.30621/jbachs.904035

Abstract

Purpose: Microsurgical anatomy of the corticospinal tract, its functional role and crucial points in differential diagnosis were evaluated. There is no consensus about its differences and cerebral origin of the corticospinal tract. Tractography and cadaver dissection can help to investigate the characteristics of the corticospinal tract. Also, amyotrophic lateral sclerosis is hard to diagnose as it has common symptoms and signs with other disorders.
Methods: Three formalin-fixed human brains (six sides) were dissected by the Klingler technique in a stepwise manner from the lateral to medial and superior to inferior under 6x–40x magnification using a surgical microscope. All stages of the dissection were photographed using three-dimensional method. Lastly, we present a patient with the sign of drop foot who underwent electromyographical and radiological examination, diagnosed as atypic amyotrophic lateral sclerosis.
Results: The connections of the corticospinal tract, in particular the travel in the in trajectories of stepwise in manner cerebral origin. We demonstrated a case report with anatomic correlation to define the damage of corticospinal tract in variable levels. Crucial landmarks, connections, eloquent brain areas that related to the corticospinal tract were emphasized.
Conclusion: So that pointing the importance of such disorders to keep in mind as not to move forward with incorrect operation decision. Trajectory of one of the largest desending pathway, corticospinal tract and the relationship with different diagnosis should be considered.

Project Number

Yok

References

  • 1. Davidoff RA. The pyramidal tract. Neurology. 1990;40(2):332-9.
  • 2. Nyberg-Hansen R. ["The pyramidal tract syndrome" in man in the light of experimental investigations]. Tidsskr Nor Laegeforen. 1968;88(1):8-14.
  • 3. Verhaart WJ. The pyramidal tract. Its structure and functions in man and animals. World Neurol. 1962;3:43-53.
  • 4. Heffner RS, Masterton RB. The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol. 1983;23(3-4):165-83.
  • 5. York DH. Review of descending motor pathways involved with transcranial stimulation. Neurosurgery. 1987;20(1):70-3.
  • 6. Natali AL, Reddy V, Bordoni B. Neuroanatomy, Corticospinal Cord Tract. StatPearls. Treasure Island (FL)2020.
  • 7. Seo JP, Jang SH. Different characteristics of the corticospinal tract according to the cerebral origin: DTI study. AJNR Am J Neuroradiol. 2013;34(7):1359-63.
  • 8. Galea MP, Darian-Smith I. Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections. Cereb Cortex. 1994;4(2):166-94.
  • 9. Lemon RN, Maier MA, Armand J, Kirkwood PA, Yang HW. Functional differences in corticospinal projections from macaque primary motor cortex and supplementary motor area. Adv Exp Med Biol. 2002;508:425-34.
  • 10. Maier MA, Armand J, Kirkwood PA, Yang HW, Davis JN, Lemon RN. Differences in the corticospinal projection from primary motor cortex and supplementary motor area to macaque upper limb motoneurons: an anatomical and electrophysiological study. Cereb Cortex. 2002;12(3):281-96.
  • 11. Russell JR, Demyer W. The quantitative corticoid origin of pyramidal axons of Macaca rhesus. With some remarks on the slow rate of axolysis. Neurology. 1961;11:96-108.
  • 12. Toyoshima K, Sakai H. Exact cortical extent of the origin of the corticospinal tract (CST) and the quantitative contribution to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey. J Hirnforsch. 1982;23(3):257-69.
  • 13. Chenot Q, Tzourio-Mazoyer N, Rheault F, Descoteaux M, Crivello F, Zago L, et al. A population-based atlas of the human pyramidal tract in 410 healthy participants. Brain Struct Funct. 2019;224(2):599-612.
  • 14. Frey D, Strack V, Wiener E, Jussen D, Vajkoczy P, Picht T. A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage. 2012;62(3):1600-9.
  • 15. Holodny AI, Gor DM, Watts R, Gutin PH, Ulug AM. Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: initial anatomic results in contradistinction to prior reports. Radiology. 2005;234(3):649-53.
  • 16. Kunimatsu A, Aoki S, Masutani Y, Abe O, Hayashi N, Mori H, et al. The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. Magn Reson Med Sci. 2004;3(1):11-7.
  • 17. Lee DH, Lee DW, Han BS. Topographic organization of motor fibre tracts in the human brain: findings in multiple locations using magnetic resonance diffusion tensor tractography. Eur Radiol. 2016;26(6):1751-9.
  • 18. O. AM. An Essay on the Human Corticospinal Tract: History, Development, Anatomy, and Connections. Neuroanatomy. 2011;10:1-4.
  • 19. Reich DS, Smith SA, Jones CK, Zackowski KM, van Zijl PC, Calabresi PA, et al. Quantitative characterization of the corticospinal tract at 3T. AJNR Am J Neuroradiol. 2006;27(10):2168-78.
  • 20. Verstynen T, Jarbo K, Pathak S, Schneider W. In vivo mapping of microstructural somatotopies in the human corticospinal pathways. J Neurophysiol. 2011;105(1):336-46.
  • 21. Otomo A, Pan L, Hadano S. Dysregulation of the autophagy-endolysosomal system in amyotrophic lateral sclerosis and related motor neuron diseases. Neurol Res Int. 2012;2012:498428.
  • 22. Durand J, Amendola J, Bories C, Lamotte d'Incamps B. Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. J Physiol Paris. 2006;99(2-3):211-20.
  • 23. J. K. Erleichterung der makroskopischen Praeparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 1935;36:247–56.
  • 24. Javed K, Reddy V, Lui F. Neuroanatomy, Lateral Corticospinal Tract. StatPearls. Treasure Island (FL)2021.
  • 25. Yagmurlu K, Rhoton AL, Jr., Tanriover N, Bennett JA. Three-dimensional microsurgical anatomy and the safe entry zones of the brainstem. Neurosurgery. 2014;10 Suppl 4:602-19; discussion 19-20.
  • 26. Bozkurt B, Yagmurlu K, Middlebrooks EH, Karadag A, Ovalioglu TC, Jagadeesan B, et al. Microsurgical and Tractographic Anatomy of the Supplementary Motor Area Complex in Humans. World Neurosurg. 2016;95:99-107.
  • 27. Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, et al. Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. AJNR Am J Neuroradiol. 2009;30(10):1963-70.
  • 28. Biceroglu H, Karadag A. Neuroanatomical Aspects of the Temporo-Parieto-Occipital Junction and New Surgical Strategy to Preserve the Associated Tracts in Junctional Lesion Surgery: Fiber Separation Technique. Turk Neurosurg. 2019;29(6):864-74.
  • 29. Kretschmann HJ. Localisation of the corticospinal fibres in the internal capsule in man. J Anat. 1988;160:219-25.
  • 30. Welniarz Q, Dusart I, Roze E. The corticospinal tract: Evolution, development, and human disorders. Dev Neurobiol. 2017;77(7):810-29.
  • 31. Ebeling U, Reulen HJ. Subcortical topography and proportions of the pyramidal tract. Acta Neurochir (Wien). 1992;118(3-4):164-71.
  • 32. Englander RN, Netsky MG, Adelman LS. Location of human pyramidal tract in the internal capsule: anatomic evidence. Neurology. 1975;25(9):823-6.
  • 33. Ross ED. Localization of the pyramidal tract in the internal capsule by whole brain dissection. Neurology. 1980;30(1):59-64.
  • 34. Sullivan EV, Zahr NM, Rohlfing T, Pfefferbaum A. Fiber tracking functionally distinct components of the internal capsule. Neuropsychologia. 2010;48(14):4155-63.
  • 35. Seo JP, Jang SH. Characteristics of corticospinal tract area according to pontine level. Yonsei Med J. 2013;54(3):785-7.
  • 36. Jang SH. The role of the corticospinal tract in motor recovery in patients with a stroke: a review. NeuroRehabilitation. 2009;24(3):285-90.
  • 37. Nathan PW, Smith MC, Deacon P. The corticospinal tracts in man. Course and location of fibres at different segmental levels. Brain. 1990;113 ( Pt 2):303-24.
  • 38. Jang SH. The corticospinal tract from the viewpoint of brain rehabilitation. J Rehabil Med. 2014;46(3):193-9.
  • 39. Karadag A, Senoglu M, Middlebrooks EH, Kinali B, Guvencer M, Icke C, et al. Endoscopic endonasal transclival approach to the ventral brainstem: Radiologic, anatomic feasibility and nuances, surgical limitations and future directions. J Clin Neurosci. 2020;73:264-79.
  • 40. Fulton JF, Sheehan D. The Uncrossed Lateral Pyramidal Tract in Higher Primates. J Anat. 1935;69(Pt 2):181-7.
  • 41. Nyberg‐Hansen R, Rinvik E. Some comments on the pyramidal tract, with special reference to its individual variations in man. Acta Neurol Scand. 1963;39:1-30.
  • 42. Cho SH, Kim SH, Choi BY, Cho SH, Kang JH, Lee CH, et al. Motor outcome according to diffusion tensor tractography findings in the early stage of intracerebral hemorrhage. Neurosci Lett. 2007;421(2):142-6.
  • 43. Matsuyama K, Mori F, Nakajima K, Drew T, Aoki M, Mori S. Locomotor role of the corticoreticular-reticulospinal-spinal interneuronal system. Prog Brain Res. 2004;143:239-49.
  • 44. Nudo RJ, Masterton RB. Descending pathways to the spinal cord, III: Sites of origin of the corticospinal tract. J Comp Neurol. 1990;296(4):559-83.
  • 45. Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461-74.
  • 46. Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke. 2007;38(3):1088-90.
  • 47. Jang SH, Lee SJ. Corticoreticular Tract in the Human Brain: A Mini Review. Front Neurol. 2019;10:1188.
  • 48. Nudo RJ, Masterton RB. Descending pathways to the spinal cord: II. Quantitative study of the tectospinal tract in 23 mammals. J Comp Neurol. 1989;286(1):96-119.
  • 49. Reynolds N, Al Khalili Y. Neuroanatomy, Tectospinal Tract. StatPearls. Treasure Island (FL)2020.
  • 50. G. S, C. W. Spinal Cord: Connections. The Human Nervous System(3rd edition). 2012;Chapter 7 233-58.
  • 51. Onodera S, Hicks TP. A comparative neuroanatomical study of the red nucleus of the cat, macaque and human. PLoS One. 2009;4(8):e6623.
  • 52. ten Donkelaar HJ. Evolution of the red nucleus and rubrospinal tract. Behav Brain Res. 1988;28(1-2):9-20.
  • 53. Rajagopalan V, Pioro EP. Differential involvement of corticospinal tract (CST) fibers in UMN-predominant ALS patients with or without CST hyperintensity: A diffusion tensor tractography study. Neuroimage Clin. 2017;14:574-9.
  • 54. Yin H, Cheng SH, Zhang J, Ma L, Gao Y, Li D, et al. Corticospinal tract degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging and fibre tractography study. Ann Acad Med Singapore. 2008;37(5):411-5.
  • 55. Eisen A. Amyotrophic lateral sclerosis is a multifactorial disease. Muscle Nerve. 1995;18(7):741-52.
  • 56. Leigh PN, Ray-Chaudhuri K. Motor neuron disease. J Neurol Neurosurg Psychiatry. 1994;57(8):886-96.
  • 57. Pasinetti GM, Ungar LH, Lange DJ, Yemul S, Deng H, Yuan X, et al. Identification of potential CSF biomarkers in ALS. Neurology. 2006;66(8):1218-22.
  • 58. Appel SH. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol. 1981;10(6):499-505.
  • 59. Plaitakis A, Constantakakis E, Smith J. The neuroexcitotoxic amino acids glutamate and aspartate are altered in the spinal cord and brain in amyotrophic lateral sclerosis. Ann Neurol. 1988;24(3):446-9.
  • 60. Chen H, Guo Y, Hu M, Duan W, Chang G, Li C. Differential expression and alternative splicing of genes in lumbar spinal cord of an amyotrophic lateral sclerosis mouse model. Brain Res. 2010;1340:52-69.
  • 61. Chou SM, Norris FH. Amyotrophic lateral sclerosis: lower motor neuron disease spreading to upper motor neurons. Muscle Nerve. 1993;16(8):864-9.
  • 62. Eisen AA. Comment on the lower motor neuron hypothesis. Muscle Nerve. 1993;16(8):870-1.
  • 63. Jang SH, Seo JP. Aging of corticospinal tract fibers according to the cerebral origin in the human brain: a diffusion tensor imaging study. Neurosci Lett. 2015;585:77-81.
  • 64. Mascalchi M, Salvi F, Valzania F, Marcacci G, Bartolozzi C, Tassinari CA. Corticospinal tract degeneration in motor neuron disease. AJNR Am J Neuroradiol. 1995;16(4 Suppl):878-80.
  • 65. Yin H, Cheng SH, Zhang J, Ma L, Gao Y, Li D, et al. Corticospinal tract degeneration in amyotrophic lateral sclerosis: a diffusion tensor imaging and fibre tractography study. Ann Acad Med Singap. 2008;37(5):411-5.
There are 65 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Ali Karadag 0000-0002-6280-8131

Muyassar Mirkhasilova This is me 0000-0002-7067-2481

Erik H Middlebrooks This is me 0000-0002-4418-9605

Kaan Yagmurlu This is me 0000-0002-7635-2809

Mahmut Çamlar 0000-0002-6467-0172

Sami Bardakci This is me 0000-0002-8309-385X

Mehmet Şenoğlu 0000-0002-3151-7120

Project Number Yok
Publication Date May 27, 2021
Submission Date March 29, 2021
Published in Issue Year 2021 Volume: 5 Issue: 2

Cite

APA Karadag, A., Mirkhasilova, M., H Middlebrooks, E., Yagmurlu, K., et al. (2021). Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection. Journal of Basic and Clinical Health Sciences, 5(2), 65-72. https://doi.org/10.30621/jbachs.904035
AMA Karadag A, Mirkhasilova M, H Middlebrooks E, Yagmurlu K, Çamlar M, Bardakci S, Şenoğlu M. Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection. JBACHS. May 2021;5(2):65-72. doi:10.30621/jbachs.904035
Chicago Karadag, Ali, Muyassar Mirkhasilova, Erik H Middlebrooks, Kaan Yagmurlu, Mahmut Çamlar, Sami Bardakci, and Mehmet Şenoğlu. “Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection”. Journal of Basic and Clinical Health Sciences 5, no. 2 (May 2021): 65-72. https://doi.org/10.30621/jbachs.904035.
EndNote Karadag A, Mirkhasilova M, H Middlebrooks E, Yagmurlu K, Çamlar M, Bardakci S, Şenoğlu M (May 1, 2021) Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection. Journal of Basic and Clinical Health Sciences 5 2 65–72.
IEEE A. Karadag, M. Mirkhasilova, E. H Middlebrooks, K. Yagmurlu, M. Çamlar, S. Bardakci, and M. Şenoğlu, “Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection”, JBACHS, vol. 5, no. 2, pp. 65–72, 2021, doi: 10.30621/jbachs.904035.
ISNAD Karadag, Ali et al. “Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection”. Journal of Basic and Clinical Health Sciences 5/2 (May 2021), 65-72. https://doi.org/10.30621/jbachs.904035.
JAMA Karadag A, Mirkhasilova M, H Middlebrooks E, Yagmurlu K, Çamlar M, Bardakci S, Şenoğlu M. Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection. JBACHS. 2021;5:65–72.
MLA Karadag, Ali et al. “Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection”. Journal of Basic and Clinical Health Sciences, vol. 5, no. 2, 2021, pp. 65-72, doi:10.30621/jbachs.904035.
Vancouver Karadag A, Mirkhasilova M, H Middlebrooks E, Yagmurlu K, Çamlar M, Bardakci S, Şenoğlu M. Importance of Different Characteristic of the Corticospinal Tract Based on DTI and Cadaveric Microdissection. JBACHS. 2021;5(2):65-72.