Research Article
BibTex RIS Cite
Year 2022, , 1045 - 1062, 24.07.2022
https://doi.org/10.37212/jcnos.1117261

Abstract

References

  • Aebi H. 1974. Catalase. In: Bergmeyer, editor. Mehtods in enzymatic analysis, Vol.2, New York. Academic Press: pp 674-684.
  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery W R. (2001). Protein oxidation in the brain in Alzheimer's disease. Neurosci. 103(2): 373–383. https://doi.org/10.1016/s0306-4522(00)00580-7
  • Asirvatham R, Prasad Nediyara P, Pa D, John GB. (2022). Protective effects of Pluchea lanceolata on dementia induced by omeprazole in experimental rats. J Cell Neurosci Oxidative Stress.13 (3): https://doi.org/10.37212/jcnos.1078918
  • Beutler E, Kelly BM. (1963). The effect of sodium nitrate on red cell glutathione. Experientia. 18: 96-97. https://doi.org/10.1007/BF02148042.
  • Borai IH, Ezz MK, Rizk MZ, Aly HF, El-Sherbiny M, Matloub AA, Fouad, GI. (2017). Therapeutic impact of grape leaves polyphenols on certain biochemical and neurological markers in AlCl3-induced Alzheimer's disease. Biomed Pharmacother. 93: 837–851. https://doi.org/10.1016/j.biopha.2017.07.038 Clarlone AE. (1978). Further modification of a fluorometric method for analyzing brain amines. Microchem J. 23: 9-12. https://doi.org/10.1016/0026-265X(78)90034-6.
  • Cook L, Weidley E. (1957). Behavioral effects of some psychopharmacological agents. Ann N Y Acad Sci. 66(3): 740–752. https://doi.org/10.1111/j.1749-6632.1957.tb40763.
  • Crapper DR, Krishnan SS, Dalton AJ. (1973). Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science (New York, N.Y.). 180(4085): 511–513. https://doi.org/10.1126/science.180.4085.511
  • Doungue HT, Kengne APN, Kuate D. (2018). Neuroprotective effect and antioxidant activity of Passiflora edulis fruit flavonoid fraction, aqueous extract, and juice in aluminum chloride-induced Alzheimer's disease rats. Nutrire. 43: 23. https://doi.org/10.1186/s41110-018-0082-1
  • Ellman GL. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys. 82(1): 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Ganga Raju M, Gouthami KNVL, Suvarchala Reddy V, Michaela Nicholas. (2020). Anti-amnesic effect of methanolic leaf extract of Tecoma stans: an experimental study in rodents. J Young Pharm. 12(2): 91–96. https://doi:10.5530/jyp.2020.12s.54
  • Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. (2015). Noradrenergic dysfunction in Alzheimer's disease. Front Neurosci. 9: 220. https://doi.org/10.3389/fnins.2015.00220
  • Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. (2009). Histopathological image analysis: a review. IEEE Rev Biomed Eng, 2:147-71. https://doi.org/10.1109/RBME.2009.2034865.
  • Jafarian S, Ling KH, Hassan Z, Perimal-Lewis L, Sulaiman MR, Perimal EK. (2019). Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats. Alzheimers Dement (N Y).5:637–643. https://doi.org/10.1016/j.trci.2019.09.009
  • Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T. (2015). Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer's disease in Wistar rats. Neurochem Res. 40(4): 767–776. https://doi.org/10.1007/s11064-015-1525-1
  • Kakkar P, Dos B, Viswanathan PN, Maehly AC, Chance B.1954. In: Methods of Biochemical Analysis Vol. I, Glick D,editors. New York: Interscience. pp 357.
  • Kangtao Yangqian, Souravh Bais. 2018. Neuroprotective effect of protocatechuic acid through MAO-B inhibition in aluminium chloride induced dementia of Alzheimer's type in rats. Int J Pharmacol. 14: 879-888. https://scialert.net/abstract/?doi=ijp.2018.879.888
  • Kumar GP, Khanum F. (2012). Neuroprotective potential of phytochemicals. Pharmacogn Rev. 6(12): 81–90. https://doi.org/10.4103/0973-7847.99898 Lakshmi BV, Sudhakar M, Prakash KS. (2015). Protective effect of selenium against aluminum chloride-induced Alzheimer's disease: behavioral and biochemical alterations in rats. Biol Trace Elem Res. 165(1): 67–74. https://doi.org/10.1007/s12011-015-0229-3
  • Li XL, Hu N, Tan MS, Yu JT, Tan L. (2014). Behavioral and psychological symptoms in Alzheimer's disease. BioMed Res Int. 927804. https://doi.org/10.1155/2014/927804
  • Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM. (2019). Chemicals used for the induction of Alzheimer's disease-like cognitive dysfunctions in rodents. Biomed Res Ther. 6(11): 3460-3484. https://doi.org/10.15419/bmrat.v6i11.575
  • Mathew AA, Asirvatham R, Tomy DV. (2021). Cardioprotective Effect of Marsdenia tenacissima and Sansevieria roxburghiana in Doxorubicin-induced Cardiotoxicity in Rats in vivo: The Role of Dresgenin and Lupeol. Turk J Pharm Sci. 18(3):271-281. https://doi.org/10.4274/tjps.galenos.2020.27880.
  • Mathiyazahan DB, Arokiasamy JT. (2019). Attenuation of Aluminum induced neurotoxicity by tannoid principles of Emblica officinalis in Wistar rats. Int J Nutr Pharmacol Neurol Dis. 35–40. https://doi.org/10.4103/ijnpnd.ijnpnd_23_18
  • Murugaiyan SM, Bhargavan R. (2020). Bacopa monnieri alleviates aluminium chloride-induced anxiety by regulating plasma corticosterone level in Wistar rats. J Basic Clin Physiol Pharmacol. /j/jbcpp.ahead-of-print/jbcpp-2019-0379/jbcpp-2019-0379.xml. Advance online publication. https://doi.org/10.1515/jbcpp-2019-0379
  • Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal Bio Chem. 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3.
  • Palash M, Kumar V, Kumar S, Maurya SK, Nandi MK, Damiki L. (2013). A controversial medicinal plant ‘Rasna’: An overview. International Conference on Global Scenario of Traditional System of Medicine, Ayurveda, Agriculture and Education, 102–105.
  • Prema A, Justin Thenmozhi A, Manivasagam T, Mohamed Essa M, Guillemin, GJ. (2017). Fenugreek seed powder attenuated aluminum chloride-induced tau pathology, oxidative stress, and inflammation in a rat model of alzheimer's disease. J Alzheimer's Dis. 60(s1): S209–S220. https://doi.org/10.3233/JAD-161103 Rabiei Z, Setorki M. (2018). Effect of hydroalcoholic Echium amoenum extract on scopolamine-induced learning and memory impairment in rats. Pharm Biol. 56(1): 672–677. https://doi.org/10.1080/13880209.2018.1543330
  • Raft KP, Kannan M, Parveen,GCK. (2012). A review on Alzheimerogenic chemicals and Alzheimer protective herbs. J Pharm Res. 5(4): 2151–2155.
  • Raju A, Aparna AM, Priya PN, Martin C, Dinu G, Daisy PA. (2021). Identification of novel BCL- 2‐specific inhibitors from Murva - a promising Ayurvedic anticancer agent (In Vitro & In Vivo studies). Int J Pharm Res. 13(2): 1636-1648. DOI: https://doi.org/10.31838/ijpr/2021.13.02.228
  • Ramachandran S, Sri Ramya M, Liza U, Lakshmi Prasanna Ps, Sarishma K. (2019). Evaluation of the prophylactic role of Indian shrimp in aluminum chloride-induced alzheimer's disease on experimental rats. Asian J Pharm Clin Res. 12(3): 377-382. https://doi.org/10.22159/ajpcr.2019.v12i3.30720
  • Reddy K, Likithasree P, Peraman R, Jyothi M, Babu C, Pradeepkumar B, Sudheer A. (2020). Spatial long-term memory retention by banana and papaya peel extract: In silico and in vivo evaluation. Int J Pharm Investig. 10(2): 202-207. https://doi.org/10.5530/ijpi.2020.2.37
  • Reddy PH. (2017). A critical assessment of research on neurotransmitters in Alzheimer's disease. J Alzheimer's Dis. 57(4): 969–974. https://doi.org/10.3233/JAD-170256
  • Reynolds G, Mason S, Meldrum A, De Keczer S, Parties H, Eglen R. (1995). 5- Hydroxytryptamine (5-HT) 4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol. 114(5): 993–998. https://doi.org/10.1111/j.1476-5381.1995.tb13303.x
  • Sarkar R, Mandal N. (2012). Hydroalcoholic extracts of Indian medicinal plants can help in amelioration from oxidative stress through antioxidant properties. J Complement Integr Med. 9(1): 1-19. https://doi.org/10.1515/1553-3840.1583.
  • Schlumpf M, Lichtensteiger W, Langemann H, Waser PG, Hefti F. (1974). A fluorometric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue. Biochem Pharmacol. 23(17): 2437–2446. https://doi.org/10.1016/0006-2952(74)90235-4
  • Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal A, Khan ZA. (2018). EGCG Nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer's disease. Front Aging Neurosci. 10: 244. https://doi.org/10.3389/fnagi.2018.00244
  • Soman I, Mengi SA, Kasture SB. (2004). Effect of leaves of Butea frondosa on stress, anxiety, and cognition in rats. Pharmacol Biochem Behav. 79(1): 11–16. https://doi.org/10.1016/j.pbb.2004.05.022
  • Srivastava P, Shanker K. (2012). Pluchea lanceolata (Rasana): Chemical and biological potential of Rasayana herb used in traditional system of medicine. Fitoterapia. 83(8):1371–1385. https://doi.org/10.1016/j.fitote.2012.07.008
  • Tamura BK, Masaki KH, Blanchette P. (2007). Weight loss in patients with Alzheimer's disease. J Nutr Elder. 26(3-4): 21–38. https://doi.org/10.1300/j052v26n03_02
  • Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. (2018). The Neuroprotective effects of exercise: maintaining a healthy brain throughout aging. Brain plast. 4(1): 17–52. https://doi.org/10.3233/BPL-180069
  • Whiteside C, Hassan HM. (1987). Induction and inactivation of catalase and superoxide dismutase of Escherichia coli by ozone. Arch Biochem Biophy. 259(2):464-471. https://doi.org/10.1016/0003-9861(87)90591-1.
  • Yokel RA, McNamara PJ. (1989). Elevated aluminum persists in serum and tissues of rabbits after a six-hour infusion. Toxicol Appl Pharmacol. 99(1): 133–138. https://doi.org/10.1016/0041-008x(89)90118-x
  • Zaky A, Bassiouny A, Farghaly M, El-Sabaa BM. (2017). A combination of resveratrol and curcumin is effective against Aluminum chloride-induced neuroinflammation in rats. J Alzheimers Dis.60(s1):S221-S235. https://doi.org/10.3233/JAD-161115
  • Zheng YX, Liang YX. (1998). The antagonistic effects of L-dopa and eserine on Al-induced neurobehavioral deficits in rats. Biomed Environ Sci. 11(4): 321–330.

The beneficial effect of Pluchea lanceolata on aluminum chloride-induced Alzheimer's disease in rats

Year 2022, , 1045 - 1062, 24.07.2022
https://doi.org/10.37212/jcnos.1117261

Abstract

Aluminum chloride (AlCl3) causes neuroinflammation in rats, which leads to the development of Alzheimer's disease. The current study focused on the anti-Alzheimer and antioxidant potential of hydromethanolic extracts of Pluchea lanceolata (PL), a well-known Rasna source. Phytoconstituents such as pluchine and moretenol acetate are selected for the PASS online and molecular docking (in silico) experimental model. A total of 36 Wistar rats were divided into VI groups, each with six rats. Group I: normal control, Group II: disease control, Group III: Rivastigmine (0.3 mg/kg, p.o), Group IV and V: Hydromethanolic extract of PL (HMEPL, 200 mg/kg, 400 mg/kg, p.o), and Group VI: Ayurvedic Formulation of Rasna (AFR) (1ml/kg, p.o). Except for group I, all of the animals were given Aluminum Chloride (AlCl3) (300 mg/kg, p.o). AlCl3 and plant extracts were given for 20day treatment. On the 0th, 7th, 14th, and 20th days, the behavioural study and changes in body weight were evaluated. Rats were sacrificed on the 21st day, their brains were separated, and antioxidant enzyme levels, protein levels, and neurotransmitter levels were measured. Histopathologies of the cortex and hippocampus parts of the brain were studied. The number of entries, as well as time spent in the closed arm and time taken to ascend the pole, were all increased in Group II animals, but this was reversed in groups treated with 200 mg/kg, 400 mg/kg, and1 ml/kg dosages of HMEPL and AFR. In the disease control group, AlCl3 (300 mg/kg, p.o.) caused a 1.5 fold increase in protein content and 1.7 fold increase in malondialdehyde, similarly, 1.3 fold reduction in body weight, 2.2 fold superoxide dismutase, 3.3 fold catalase, and 3.1 fold glutathione level were observed and were corrected and restored in groups treated with HMEPL and AFR. Furthermore, the histopathology findings revealed that HMEPL and AFR provided the cellular-level protection. The active components of HMEPL were found to have anti-Alzheimer and antioxidant potential and were confirmed in an in silico investigation. HMEPL > AFR was the order of anti-Alzheimer and antioxidant effectiveness.

References

  • Aebi H. 1974. Catalase. In: Bergmeyer, editor. Mehtods in enzymatic analysis, Vol.2, New York. Academic Press: pp 674-684.
  • Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery W R. (2001). Protein oxidation in the brain in Alzheimer's disease. Neurosci. 103(2): 373–383. https://doi.org/10.1016/s0306-4522(00)00580-7
  • Asirvatham R, Prasad Nediyara P, Pa D, John GB. (2022). Protective effects of Pluchea lanceolata on dementia induced by omeprazole in experimental rats. J Cell Neurosci Oxidative Stress.13 (3): https://doi.org/10.37212/jcnos.1078918
  • Beutler E, Kelly BM. (1963). The effect of sodium nitrate on red cell glutathione. Experientia. 18: 96-97. https://doi.org/10.1007/BF02148042.
  • Borai IH, Ezz MK, Rizk MZ, Aly HF, El-Sherbiny M, Matloub AA, Fouad, GI. (2017). Therapeutic impact of grape leaves polyphenols on certain biochemical and neurological markers in AlCl3-induced Alzheimer's disease. Biomed Pharmacother. 93: 837–851. https://doi.org/10.1016/j.biopha.2017.07.038 Clarlone AE. (1978). Further modification of a fluorometric method for analyzing brain amines. Microchem J. 23: 9-12. https://doi.org/10.1016/0026-265X(78)90034-6.
  • Cook L, Weidley E. (1957). Behavioral effects of some psychopharmacological agents. Ann N Y Acad Sci. 66(3): 740–752. https://doi.org/10.1111/j.1749-6632.1957.tb40763.
  • Crapper DR, Krishnan SS, Dalton AJ. (1973). Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science (New York, N.Y.). 180(4085): 511–513. https://doi.org/10.1126/science.180.4085.511
  • Doungue HT, Kengne APN, Kuate D. (2018). Neuroprotective effect and antioxidant activity of Passiflora edulis fruit flavonoid fraction, aqueous extract, and juice in aluminum chloride-induced Alzheimer's disease rats. Nutrire. 43: 23. https://doi.org/10.1186/s41110-018-0082-1
  • Ellman GL. (1959). Tissue sulfhydryl groups. Arch Biochem Biophys. 82(1): 70–77. https://doi.org/10.1016/0003-9861(59)90090-6
  • Ganga Raju M, Gouthami KNVL, Suvarchala Reddy V, Michaela Nicholas. (2020). Anti-amnesic effect of methanolic leaf extract of Tecoma stans: an experimental study in rodents. J Young Pharm. 12(2): 91–96. https://doi:10.5530/jyp.2020.12s.54
  • Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. (2015). Noradrenergic dysfunction in Alzheimer's disease. Front Neurosci. 9: 220. https://doi.org/10.3389/fnins.2015.00220
  • Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, Yener B. (2009). Histopathological image analysis: a review. IEEE Rev Biomed Eng, 2:147-71. https://doi.org/10.1109/RBME.2009.2034865.
  • Jafarian S, Ling KH, Hassan Z, Perimal-Lewis L, Sulaiman MR, Perimal EK. (2019). Effect of zerumbone on scopolamine-induced memory impairment and anxiety-like behaviours in rats. Alzheimers Dement (N Y).5:637–643. https://doi.org/10.1016/j.trci.2019.09.009
  • Justin Thenmozhi A, Raja TR, Janakiraman U, Manivasagam T. (2015). Neuroprotective effect of hesperidin on aluminium chloride induced Alzheimer's disease in Wistar rats. Neurochem Res. 40(4): 767–776. https://doi.org/10.1007/s11064-015-1525-1
  • Kakkar P, Dos B, Viswanathan PN, Maehly AC, Chance B.1954. In: Methods of Biochemical Analysis Vol. I, Glick D,editors. New York: Interscience. pp 357.
  • Kangtao Yangqian, Souravh Bais. 2018. Neuroprotective effect of protocatechuic acid through MAO-B inhibition in aluminium chloride induced dementia of Alzheimer's type in rats. Int J Pharmacol. 14: 879-888. https://scialert.net/abstract/?doi=ijp.2018.879.888
  • Kumar GP, Khanum F. (2012). Neuroprotective potential of phytochemicals. Pharmacogn Rev. 6(12): 81–90. https://doi.org/10.4103/0973-7847.99898 Lakshmi BV, Sudhakar M, Prakash KS. (2015). Protective effect of selenium against aluminum chloride-induced Alzheimer's disease: behavioral and biochemical alterations in rats. Biol Trace Elem Res. 165(1): 67–74. https://doi.org/10.1007/s12011-015-0229-3
  • Li XL, Hu N, Tan MS, Yu JT, Tan L. (2014). Behavioral and psychological symptoms in Alzheimer's disease. BioMed Res Int. 927804. https://doi.org/10.1155/2014/927804
  • Mahdi O, Baharuldin MTH, Nor NHM, Chiroma SM, Jagadeesan S, Moklas MAM. (2019). Chemicals used for the induction of Alzheimer's disease-like cognitive dysfunctions in rodents. Biomed Res Ther. 6(11): 3460-3484. https://doi.org/10.15419/bmrat.v6i11.575
  • Mathew AA, Asirvatham R, Tomy DV. (2021). Cardioprotective Effect of Marsdenia tenacissima and Sansevieria roxburghiana in Doxorubicin-induced Cardiotoxicity in Rats in vivo: The Role of Dresgenin and Lupeol. Turk J Pharm Sci. 18(3):271-281. https://doi.org/10.4274/tjps.galenos.2020.27880.
  • Mathiyazahan DB, Arokiasamy JT. (2019). Attenuation of Aluminum induced neurotoxicity by tannoid principles of Emblica officinalis in Wistar rats. Int J Nutr Pharmacol Neurol Dis. 35–40. https://doi.org/10.4103/ijnpnd.ijnpnd_23_18
  • Murugaiyan SM, Bhargavan R. (2020). Bacopa monnieri alleviates aluminium chloride-induced anxiety by regulating plasma corticosterone level in Wistar rats. J Basic Clin Physiol Pharmacol. /j/jbcpp.ahead-of-print/jbcpp-2019-0379/jbcpp-2019-0379.xml. Advance online publication. https://doi.org/10.1515/jbcpp-2019-0379
  • Ohkawa H, Ohishi N, Yagi K. (1979). Assay for lipid peroxidation in animal tissue by thiobarbituric acid reaction. Anal Bio Chem. 95: 351-358. https://doi.org/10.1016/0003-2697(79)90738-3.
  • Palash M, Kumar V, Kumar S, Maurya SK, Nandi MK, Damiki L. (2013). A controversial medicinal plant ‘Rasna’: An overview. International Conference on Global Scenario of Traditional System of Medicine, Ayurveda, Agriculture and Education, 102–105.
  • Prema A, Justin Thenmozhi A, Manivasagam T, Mohamed Essa M, Guillemin, GJ. (2017). Fenugreek seed powder attenuated aluminum chloride-induced tau pathology, oxidative stress, and inflammation in a rat model of alzheimer's disease. J Alzheimer's Dis. 60(s1): S209–S220. https://doi.org/10.3233/JAD-161103 Rabiei Z, Setorki M. (2018). Effect of hydroalcoholic Echium amoenum extract on scopolamine-induced learning and memory impairment in rats. Pharm Biol. 56(1): 672–677. https://doi.org/10.1080/13880209.2018.1543330
  • Raft KP, Kannan M, Parveen,GCK. (2012). A review on Alzheimerogenic chemicals and Alzheimer protective herbs. J Pharm Res. 5(4): 2151–2155.
  • Raju A, Aparna AM, Priya PN, Martin C, Dinu G, Daisy PA. (2021). Identification of novel BCL- 2‐specific inhibitors from Murva - a promising Ayurvedic anticancer agent (In Vitro & In Vivo studies). Int J Pharm Res. 13(2): 1636-1648. DOI: https://doi.org/10.31838/ijpr/2021.13.02.228
  • Ramachandran S, Sri Ramya M, Liza U, Lakshmi Prasanna Ps, Sarishma K. (2019). Evaluation of the prophylactic role of Indian shrimp in aluminum chloride-induced alzheimer's disease on experimental rats. Asian J Pharm Clin Res. 12(3): 377-382. https://doi.org/10.22159/ajpcr.2019.v12i3.30720
  • Reddy K, Likithasree P, Peraman R, Jyothi M, Babu C, Pradeepkumar B, Sudheer A. (2020). Spatial long-term memory retention by banana and papaya peel extract: In silico and in vivo evaluation. Int J Pharm Investig. 10(2): 202-207. https://doi.org/10.5530/ijpi.2020.2.37
  • Reddy PH. (2017). A critical assessment of research on neurotransmitters in Alzheimer's disease. J Alzheimer's Dis. 57(4): 969–974. https://doi.org/10.3233/JAD-170256
  • Reynolds G, Mason S, Meldrum A, De Keczer S, Parties H, Eglen R. (1995). 5- Hydroxytryptamine (5-HT) 4 receptors in post mortem human brain tissue: distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol. 114(5): 993–998. https://doi.org/10.1111/j.1476-5381.1995.tb13303.x
  • Sarkar R, Mandal N. (2012). Hydroalcoholic extracts of Indian medicinal plants can help in amelioration from oxidative stress through antioxidant properties. J Complement Integr Med. 9(1): 1-19. https://doi.org/10.1515/1553-3840.1583.
  • Schlumpf M, Lichtensteiger W, Langemann H, Waser PG, Hefti F. (1974). A fluorometric micromethod for the simultaneous determination of serotonin, noradrenaline and dopamine in milligram amounts of brain tissue. Biochem Pharmacol. 23(17): 2437–2446. https://doi.org/10.1016/0006-2952(74)90235-4
  • Singh NA, Bhardwaj V, Ravi C, Ramesh N, Mandal A, Khan ZA. (2018). EGCG Nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer's disease. Front Aging Neurosci. 10: 244. https://doi.org/10.3389/fnagi.2018.00244
  • Soman I, Mengi SA, Kasture SB. (2004). Effect of leaves of Butea frondosa on stress, anxiety, and cognition in rats. Pharmacol Biochem Behav. 79(1): 11–16. https://doi.org/10.1016/j.pbb.2004.05.022
  • Srivastava P, Shanker K. (2012). Pluchea lanceolata (Rasana): Chemical and biological potential of Rasayana herb used in traditional system of medicine. Fitoterapia. 83(8):1371–1385. https://doi.org/10.1016/j.fitote.2012.07.008
  • Tamura BK, Masaki KH, Blanchette P. (2007). Weight loss in patients with Alzheimer's disease. J Nutr Elder. 26(3-4): 21–38. https://doi.org/10.1300/j052v26n03_02
  • Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. (2018). The Neuroprotective effects of exercise: maintaining a healthy brain throughout aging. Brain plast. 4(1): 17–52. https://doi.org/10.3233/BPL-180069
  • Whiteside C, Hassan HM. (1987). Induction and inactivation of catalase and superoxide dismutase of Escherichia coli by ozone. Arch Biochem Biophy. 259(2):464-471. https://doi.org/10.1016/0003-9861(87)90591-1.
  • Yokel RA, McNamara PJ. (1989). Elevated aluminum persists in serum and tissues of rabbits after a six-hour infusion. Toxicol Appl Pharmacol. 99(1): 133–138. https://doi.org/10.1016/0041-008x(89)90118-x
  • Zaky A, Bassiouny A, Farghaly M, El-Sabaa BM. (2017). A combination of resveratrol and curcumin is effective against Aluminum chloride-induced neuroinflammation in rats. J Alzheimers Dis.60(s1):S221-S235. https://doi.org/10.3233/JAD-161115
  • Zheng YX, Liang YX. (1998). The antagonistic effects of L-dopa and eserine on Al-induced neurobehavioral deficits in rats. Biomed Environ Sci. 11(4): 321–330.
There are 42 citations in total.

Details

Primary Language English
Subjects Toxicology
Journal Section Original Articles
Authors

Raju Asirvatham 0000-0002-7939-4975

Daiay Pa 0000-0002-0716-2876

Salwa Salam 0000-0002-6258-8116

Publication Date July 24, 2022
Published in Issue Year 2022

Cite

APA Asirvatham, R., Pa, D., & Salam, S. (2022). The beneficial effect of Pluchea lanceolata on aluminum chloride-induced Alzheimer’s disease in rats. Journal of Cellular Neuroscience and Oxidative Stress, 14(1), 1045-1062. https://doi.org/10.37212/jcnos.1117261
AMA Asirvatham R, Pa D, Salam S. The beneficial effect of Pluchea lanceolata on aluminum chloride-induced Alzheimer’s disease in rats. J Cell Neurosci Oxid Stress. July 2022;14(1):1045-1062. doi:10.37212/jcnos.1117261
Chicago Asirvatham, Raju, Daiay Pa, and Salwa Salam. “The Beneficial Effect of Pluchea Lanceolata on Aluminum Chloride-Induced Alzheimer’s Disease in Rats”. Journal of Cellular Neuroscience and Oxidative Stress 14, no. 1 (July 2022): 1045-62. https://doi.org/10.37212/jcnos.1117261.
EndNote Asirvatham R, Pa D, Salam S (July 1, 2022) The beneficial effect of Pluchea lanceolata on aluminum chloride-induced Alzheimer’s disease in rats. Journal of Cellular Neuroscience and Oxidative Stress 14 1 1045–1062.
IEEE R. Asirvatham, D. Pa, and S. Salam, “The beneficial effect of Pluchea lanceolata on aluminum chloride-induced Alzheimer’s disease in rats”, J Cell Neurosci Oxid Stress, vol. 14, no. 1, pp. 1045–1062, 2022, doi: 10.37212/jcnos.1117261.
ISNAD Asirvatham, Raju et al. “The Beneficial Effect of Pluchea Lanceolata on Aluminum Chloride-Induced Alzheimer’s Disease in Rats”. Journal of Cellular Neuroscience and Oxidative Stress 14/1 (July 2022), 1045-1062. https://doi.org/10.37212/jcnos.1117261.
JAMA Asirvatham R, Pa D, Salam S. The beneficial effect of Pluchea lanceolata on aluminum chloride-induced Alzheimer’s disease in rats. J Cell Neurosci Oxid Stress. 2022;14:1045–1062.
MLA Asirvatham, Raju et al. “The Beneficial Effect of Pluchea Lanceolata on Aluminum Chloride-Induced Alzheimer’s Disease in Rats”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 14, no. 1, 2022, pp. 1045-62, doi:10.37212/jcnos.1117261.
Vancouver Asirvatham R, Pa D, Salam S. The beneficial effect of Pluchea lanceolata on aluminum chloride-induced Alzheimer’s disease in rats. J Cell Neurosci Oxid Stress. 2022;14(1):1045-62.