Research Article
BibTex RIS Cite
Year 2024, , 1173 - 1182, 09.07.2024
https://doi.org/10.37212/jcnos.1470198

Abstract

References

  • Abdelrazek DA, Ibrahim MA, Hassan NH, Hassanen EI, Farroh KY, Abass HI. (2023). Neuroprotective Effect of Quercetin and Nano-Quercetin Against Cyclophosphamide-Induced Oxidative Stress in The Rat Brain: Role of Nrf2/HO-1/Keap-1 Signaling Pathway. Neurotoxicol. 98:16-28. https:// doi.org/ 10.1016/ j.neuro.2023.06.008
  • Bayir MH, Yildizhan K, Altindag F. (2023). Effect of Hesperidin on Sciatic Nerve Damage in STZ-Induced Diabetic Neuropathy: Modulation of TRPM2 Channel. Neurotox Res. 41(6):638-647. https://doi.org/10.1007/s12640-023-00657-0
  • Boutet I, Collin CA, Macleod LS, Messier C, Holahan MR, Berry-Kravis E. (2018). Utility of the Hebb-William maze paradigm for translational research in Fragile X syndrome: A direct comparison of mice and humans. Front Mol Neurosci. 11:1-16. https:// doi.org/ 10.3389/fnmol.2018.00099
  • Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. (2019). Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods. 29(5):344-354. https://doi.org/10.1080/15376516.2018.1564948
  • Darvishi-Khezri H, Salehifar E, Kosaryan M, Karami H, Alipour A, Shaki F, Aliasgharian, A. (2017). The impact of silymarin on antioxidant and oxidative status in patients with β-thalassemia major: A crossover, randomized controlled trial. Complement Ther Med. 35:25-32. https://doi.org/10.1016/j.ctim.2017.08.007
  • Fock E, Parnova R. (2023). Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells. 12(4):657. https://doi.org/10.3390/cells12040657
  • Galisteo M, Duarte J, Zarzuelo A. (2008). Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem. 19(2):71-84. https:// doi.org/10.1016/j.jnutbio.2007.02.009
  • Gómez-Apo, E., Mondragón-Maya, A., Ferrari-Díaz, M., & Silva-Pereyra, J. 2021. Structural Brain Changes Associated with Overweight and Obesity. J Obes (Vol. 2021). https://doi.org/10.1155/2021/6613385
  • Gong LL, Wang ZH, Li GR, Liu LH. (2014). Protective effects of Akebia saponin D against rotenone-induced hepatic mitochondria dysfunction. J Pharmacol Sci. 126(3):243-252. https://doi.org/10.1254/jphs.14135FP
  • Gonzalez-Bosch C, Boorman E, Zunszain PA, Mann GE. (2021). Short-Chain Fatty Acids As Modulators of Redox Signaling in Health and Disease. Redox Biol. 47:1-11. https://doi.org/10.1016/j.redox.2021.102165
  • Havas D, Hutter PB, Ubhi K, Rockenstein E, Crailsheim K, Masliah E, Windisch M. (2011). A Longitudinal Study of Behavioral Deficits in an AβPP Transgenic Mouse Model of Alzheimer's Disease. J Alzheimer's Dis. 25:231-243. https://doi.org/ 10.3233 / jad-2011101866.
  • Isaac UE, Oyo-Ita E, Igwe NP, Ije EL. (2023). Preparation of histology slides and photomicrographs: Indispensable techniques in anatomic education. Anat J Afr. 12(1):2252-2262. https://doi.org/10.4314/aja.v12i1.1
  • Jordan WH, Young JK, Hyten MJ, Hall DG. (2011). Preparation and Analysis of the Central Nervous System. Toxicol Pathol. 39(1):58-65. https://doi.org/10.1177/0192623310391480
  • Kennedy RE, Cutter GR, Fowler ME, Schneider LS. (2018). Association of Concomitant Use of Cholinesterase Inhibitors or Memantine with Cognitive Decline in Alzheimer Clinical Trials: A Meta-analysis. JAMA Netw Open. 1(7). https://doi.org/10.1001/jamanetworkopen.2018.4080
  • Maideliza T, Taufiq A, Amelia A. (2018). Genetic Diversity of Cultivated Taro by Mentawai’s Indigenous Community in Indonesia. Scholars Acad J Biosci. 1(18). http://dx.doi.org/10.13140/RG.2.2.31197.67048
  • Moraes JC, Coope A, Morari J, Cintra DE, Roman EA., Pauli JR., Romanatto T, Carvalheira JB, Oliveira ALR., Saad MJ, Velloso LA. (2009). High-fat diet induces apoptosis of hypothalamic neurons. PLoS ONE. 4(4). https://doi.org/10.1371/journal.pone.0005045
  • Morys F, Potvin O, Zeighami Y, Vogel J, Lamontagne-Caron R, Duchesne S, Dagher A. (2023). Obesity-Associated Neurodegeneration Pattern Mimics Alzheimer’s Disease in an Observational Cohort Study. J Alzheimer’s Dis. 91(3):1059-1071. https://doi.org/10.3233/JAD-220535
  • Ouedrago N. Sombie PAED, Traore RE, Sama H, Bationo/Kando P, Sawadogo M, Lebot V. (2023). Nutritional and Phytochemical Characterization of Taro [Colocasia esculenta (L.) Schott] Germplasm from Burkina Faso. J Plant Breed Crop Sci. 15:32-41. https://doi.org/10.5897/JPBCS2022.0999
  • Pan Si, Zhu C. (2022). Biological and Neurological Activities of Astaxanthin. Mol Med Rep. 26:300. https://doi.org/10.3892/mmr.2022.12816
  • Rustiani E, Fitriani A, Wardatun S. (2021). Analysis of Flavonoids and Terpenoids in Ethanol Extract of Colocasia esculenta L. (Schott) Stalk and Leaves. J Trop Pharm Chem. 5(4):359-364. https:// doi.org/ 10.25026/jtpc.v5i4.349
  • Santoso P, Maliza R, Fadhilah Q, Insani SJ. (2019). Beneficial Effect of Phachyrizus erosus Fiber as a Supplemental Diet to Counteract High Sugar-Induced Fatty Liver Disease in Mice. Rom J Diabetes Nutr Metab Dis. 26(4):353-360. http://dx.doi.org/10.2478/rjdnmd2019-0038
  • Santoso P, Maliza R. 2020. Isolasi dan Uji Khasiat Serat Bengkuang. Yogyakarta: K-Media. Santoso P. 2022. Ragam Khasiat Serat Pangan Tanaman Umbi dan Rimpang. Jogjakarta: Penerbit Karya Bakti Makmur (KBM) Indonesia. Hal 16.
  • Simon H, Hexanto M, Dwi P. (2013). Pengaruh Pemberian Monosodium Glutamat Peroral Terhadap Degenerasi Neuron Piramidal CA1 Hipokampus pada Tikus Wistar. Med Hosp. 1:175-181. https://dx.doi.org/10.36408/mhjcm.v1i3.67
  • Yang ZH, Miyahara H, Takeo J, Katayama, M. (2012). Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signaling, and inflammation in mice. Diabetol Metab Syndr. 4:32. https: //doi.org/10.1186/1758-5996-4-32
  • Yildizhan K, Demirtas OC, Uyar A, Huyut Z, Cakir T, Keles OF, Yener Z. (2020). Protective Effect of Urtica dioica L. Seed Extract on Liver Tissue Injury and Antioxidant Capacity in Irradiated Rats. Braz. J. Pharm. Sci. 56:e18354. http://dx.doi.org/10.1590/s2175-97902019000318354

Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice

Year 2024, , 1173 - 1182, 09.07.2024
https://doi.org/10.37212/jcnos.1470198

Abstract

The transformation of our era, resulting in a change in dietary habits towards a higher intake of fatty foods, presents a worldwide health issue. Among these challenges is neurodegeneration, which leads to cognitive impairment. It is imperative to seek alternative solutions rooted in nature to address the limitations associated with non-natural treatment methods. This entails harnessing the properties of secondary metabolite compounds found in plants, such as Colocasia esculenta Var. Mentawai. This research aims to assess the efficacy of C. esculenta Var. Mentawai corm as neuroprotective agents in mitigating CNS damage and preventing cognitive decline associated with neurodegeneration. Daily administration of a high-fat diet and a mixture of taro flour is conducted on young adult male mice for a duration of 60 days. Furthermore, analysis of the neurocognitive ability of mice, determination of malondialdehyde levels, and observation of histopathological structures on brain tissue were carried out. The results showed that the group of mice fed with taro flour mixture effectively showed a positive impact on maintaining neurocognitive abilities and histopathological structure of brain tissue against neurodegeneration (p<0.05). However, there was no significant effect on the suppression of MDA levels in the brain when comparing treatment groups. It has been found that Mentawai taro flour is effective in preserving the brain against neurodegenerative events by preventing nerve degeneration in the hippocampal area and cerebral cortex. Consequently, Mentawai taro flour emerges as a robust candidate for functional food with the potential to address global health issues associated with neurodegeneration.

Ethical Statement

In the current study, there is no study with human and human participants. All procedures involving the animals were approved by the Research Ethic Committee Faculty of Medicine, Andalas University (Approval No. 528/ UN.16.2/ KEP-FK/ 2021).

Supporting Institution

This research was funded by World Class Research Grant no. 012/E5/PG.02.00.PL/2023 3rd year from the Indonesian Ministry of Education, Culture, Research and Technology.

Thanks

The author would like to express gratitude to the Indonesian Ministry of Education, Culture, Research, and Technology for providing financial support through the research grant (World Class Research Grant no. 012/E5/PG.02.00.PL/2023 3rd year). Additionally, the author extends thanks to the Institute for Research and Community Service (LPPM) at Andalas University for their assistance in completing the preparation of this article.

References

  • Abdelrazek DA, Ibrahim MA, Hassan NH, Hassanen EI, Farroh KY, Abass HI. (2023). Neuroprotective Effect of Quercetin and Nano-Quercetin Against Cyclophosphamide-Induced Oxidative Stress in The Rat Brain: Role of Nrf2/HO-1/Keap-1 Signaling Pathway. Neurotoxicol. 98:16-28. https:// doi.org/ 10.1016/ j.neuro.2023.06.008
  • Bayir MH, Yildizhan K, Altindag F. (2023). Effect of Hesperidin on Sciatic Nerve Damage in STZ-Induced Diabetic Neuropathy: Modulation of TRPM2 Channel. Neurotox Res. 41(6):638-647. https://doi.org/10.1007/s12640-023-00657-0
  • Boutet I, Collin CA, Macleod LS, Messier C, Holahan MR, Berry-Kravis E. (2018). Utility of the Hebb-William maze paradigm for translational research in Fragile X syndrome: A direct comparison of mice and humans. Front Mol Neurosci. 11:1-16. https:// doi.org/ 10.3389/fnmol.2018.00099
  • Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. (2019). Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods. 29(5):344-354. https://doi.org/10.1080/15376516.2018.1564948
  • Darvishi-Khezri H, Salehifar E, Kosaryan M, Karami H, Alipour A, Shaki F, Aliasgharian, A. (2017). The impact of silymarin on antioxidant and oxidative status in patients with β-thalassemia major: A crossover, randomized controlled trial. Complement Ther Med. 35:25-32. https://doi.org/10.1016/j.ctim.2017.08.007
  • Fock E, Parnova R. (2023). Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells. 12(4):657. https://doi.org/10.3390/cells12040657
  • Galisteo M, Duarte J, Zarzuelo A. (2008). Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biochem. 19(2):71-84. https:// doi.org/10.1016/j.jnutbio.2007.02.009
  • Gómez-Apo, E., Mondragón-Maya, A., Ferrari-Díaz, M., & Silva-Pereyra, J. 2021. Structural Brain Changes Associated with Overweight and Obesity. J Obes (Vol. 2021). https://doi.org/10.1155/2021/6613385
  • Gong LL, Wang ZH, Li GR, Liu LH. (2014). Protective effects of Akebia saponin D against rotenone-induced hepatic mitochondria dysfunction. J Pharmacol Sci. 126(3):243-252. https://doi.org/10.1254/jphs.14135FP
  • Gonzalez-Bosch C, Boorman E, Zunszain PA, Mann GE. (2021). Short-Chain Fatty Acids As Modulators of Redox Signaling in Health and Disease. Redox Biol. 47:1-11. https://doi.org/10.1016/j.redox.2021.102165
  • Havas D, Hutter PB, Ubhi K, Rockenstein E, Crailsheim K, Masliah E, Windisch M. (2011). A Longitudinal Study of Behavioral Deficits in an AβPP Transgenic Mouse Model of Alzheimer's Disease. J Alzheimer's Dis. 25:231-243. https://doi.org/ 10.3233 / jad-2011101866.
  • Isaac UE, Oyo-Ita E, Igwe NP, Ije EL. (2023). Preparation of histology slides and photomicrographs: Indispensable techniques in anatomic education. Anat J Afr. 12(1):2252-2262. https://doi.org/10.4314/aja.v12i1.1
  • Jordan WH, Young JK, Hyten MJ, Hall DG. (2011). Preparation and Analysis of the Central Nervous System. Toxicol Pathol. 39(1):58-65. https://doi.org/10.1177/0192623310391480
  • Kennedy RE, Cutter GR, Fowler ME, Schneider LS. (2018). Association of Concomitant Use of Cholinesterase Inhibitors or Memantine with Cognitive Decline in Alzheimer Clinical Trials: A Meta-analysis. JAMA Netw Open. 1(7). https://doi.org/10.1001/jamanetworkopen.2018.4080
  • Maideliza T, Taufiq A, Amelia A. (2018). Genetic Diversity of Cultivated Taro by Mentawai’s Indigenous Community in Indonesia. Scholars Acad J Biosci. 1(18). http://dx.doi.org/10.13140/RG.2.2.31197.67048
  • Moraes JC, Coope A, Morari J, Cintra DE, Roman EA., Pauli JR., Romanatto T, Carvalheira JB, Oliveira ALR., Saad MJ, Velloso LA. (2009). High-fat diet induces apoptosis of hypothalamic neurons. PLoS ONE. 4(4). https://doi.org/10.1371/journal.pone.0005045
  • Morys F, Potvin O, Zeighami Y, Vogel J, Lamontagne-Caron R, Duchesne S, Dagher A. (2023). Obesity-Associated Neurodegeneration Pattern Mimics Alzheimer’s Disease in an Observational Cohort Study. J Alzheimer’s Dis. 91(3):1059-1071. https://doi.org/10.3233/JAD-220535
  • Ouedrago N. Sombie PAED, Traore RE, Sama H, Bationo/Kando P, Sawadogo M, Lebot V. (2023). Nutritional and Phytochemical Characterization of Taro [Colocasia esculenta (L.) Schott] Germplasm from Burkina Faso. J Plant Breed Crop Sci. 15:32-41. https://doi.org/10.5897/JPBCS2022.0999
  • Pan Si, Zhu C. (2022). Biological and Neurological Activities of Astaxanthin. Mol Med Rep. 26:300. https://doi.org/10.3892/mmr.2022.12816
  • Rustiani E, Fitriani A, Wardatun S. (2021). Analysis of Flavonoids and Terpenoids in Ethanol Extract of Colocasia esculenta L. (Schott) Stalk and Leaves. J Trop Pharm Chem. 5(4):359-364. https:// doi.org/ 10.25026/jtpc.v5i4.349
  • Santoso P, Maliza R, Fadhilah Q, Insani SJ. (2019). Beneficial Effect of Phachyrizus erosus Fiber as a Supplemental Diet to Counteract High Sugar-Induced Fatty Liver Disease in Mice. Rom J Diabetes Nutr Metab Dis. 26(4):353-360. http://dx.doi.org/10.2478/rjdnmd2019-0038
  • Santoso P, Maliza R. 2020. Isolasi dan Uji Khasiat Serat Bengkuang. Yogyakarta: K-Media. Santoso P. 2022. Ragam Khasiat Serat Pangan Tanaman Umbi dan Rimpang. Jogjakarta: Penerbit Karya Bakti Makmur (KBM) Indonesia. Hal 16.
  • Simon H, Hexanto M, Dwi P. (2013). Pengaruh Pemberian Monosodium Glutamat Peroral Terhadap Degenerasi Neuron Piramidal CA1 Hipokampus pada Tikus Wistar. Med Hosp. 1:175-181. https://dx.doi.org/10.36408/mhjcm.v1i3.67
  • Yang ZH, Miyahara H, Takeo J, Katayama, M. (2012). Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signaling, and inflammation in mice. Diabetol Metab Syndr. 4:32. https: //doi.org/10.1186/1758-5996-4-32
  • Yildizhan K, Demirtas OC, Uyar A, Huyut Z, Cakir T, Keles OF, Yener Z. (2020). Protective Effect of Urtica dioica L. Seed Extract on Liver Tissue Injury and Antioxidant Capacity in Irradiated Rats. Braz. J. Pharm. Sci. 56:e18354. http://dx.doi.org/10.1590/s2175-97902019000318354
There are 25 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other), Animal Physiology - Cell, Pharmacology and Pharmaceutical Sciences (Other), Neurosciences (Other), Medical Physiology (Other)
Journal Section Original Articles
Authors

Fajri Ramadhan Marviano This is me 0009-0008-5141-7937

Putra Santoso 0000-0003-4092-6222

Resti Rahayu This is me 0000-0002-8882-0593

Publication Date July 9, 2024
Submission Date April 18, 2024
Acceptance Date June 20, 2024
Published in Issue Year 2024

Cite

APA Ramadhan Marviano, F., Santoso, P., & Rahayu, R. (2024). Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice. Journal of Cellular Neuroscience and Oxidative Stress, 16(1), 1173-1182. https://doi.org/10.37212/jcnos.1470198
AMA Ramadhan Marviano F, Santoso P, Rahayu R. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice. J Cell Neurosci Oxid Stress. July 2024;16(1):1173-1182. doi:10.37212/jcnos.1470198
Chicago Ramadhan Marviano, Fajri, Putra Santoso, and Resti Rahayu. “Neuroprotective Effect of Colocasia Esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice”. Journal of Cellular Neuroscience and Oxidative Stress 16, no. 1 (July 2024): 1173-82. https://doi.org/10.37212/jcnos.1470198.
EndNote Ramadhan Marviano F, Santoso P, Rahayu R (July 1, 2024) Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice. Journal of Cellular Neuroscience and Oxidative Stress 16 1 1173–1182.
IEEE F. Ramadhan Marviano, P. Santoso, and R. Rahayu, “Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice”, J Cell Neurosci Oxid Stress, vol. 16, no. 1, pp. 1173–1182, 2024, doi: 10.37212/jcnos.1470198.
ISNAD Ramadhan Marviano, Fajri et al. “Neuroprotective Effect of Colocasia Esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice”. Journal of Cellular Neuroscience and Oxidative Stress 16/1 (July 2024), 1173-1182. https://doi.org/10.37212/jcnos.1470198.
JAMA Ramadhan Marviano F, Santoso P, Rahayu R. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice. J Cell Neurosci Oxid Stress. 2024;16:1173–1182.
MLA Ramadhan Marviano, Fajri et al. “Neuroprotective Effect of Colocasia Esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice”. Journal of Cellular Neuroscience and Oxidative Stress, vol. 16, no. 1, 2024, pp. 1173-82, doi:10.37212/jcnos.1470198.
Vancouver Ramadhan Marviano F, Santoso P, Rahayu R. Neuroprotective Effect of Colocasia esculenta Var. Mentawai Corm Flour High-Fat Diet Fed Mice. J Cell Neurosci Oxid Stress. 2024;16(1):1173-82.