Research Article
BibTex RIS Cite

BİNA BİLGİ MODELLEME İLE ERKEN TASARIM AŞAMASINDA KARAR VERME SÜREÇLERİNİN SÜRDÜRÜLEBİLİRLİK BAĞLAMINDA DEĞERLENDİRİLMESİ

Year 2020, Volume: 1 Issue: 2, 1 - 26, 31.03.2020

Abstract

Sanayi Devrimi ile başlayan ve günümüze kadar uzanan süreçte dünya tarihinde daha önce görülmemiş bir hızda değişim ve gelişim gerçekleşmiştir. Özellikle son elli yılda gerçekleşen gelişmeler, ortaya çıkan ihtiyaçlar ve uygulanan çözüm yollarının sonucunda; küresel olarak dünyayı etkileyen küresel ısınma sorunu, belirgin iklim değişiklikleri, ozon tabakasının incelmesi, yeraltı kaynaklarının tükenme tehlikesi, enerji sarfiyatının ve çevre kirliliğinin artması gibi yeni olumsuzluklar ortaya çıkmıştır. Araştırmalar, mimarlık alanının ve özellikle de mimari tasarımın bu durum ile doğrudan ilişkili olduğunu ortaya koymuştur. Bu olumsuz durumun üstesinden gelebilmek adına yeni tasarım araçları ve yaklaşımları geliştirilmeye başlanmıştır. Bu bağlamda, Bina Bilgi Modelleme ortamları için kütle tasarım araçları geliştirilmiş ve ortamın bu kütle modelleri üzerinde kavramsal analiz ve simülasyonlar yapabilmesi sağlanmıştır. Böylelikle, tasarımcılara erken tasarım aşamasında dahi tasarımlarını belirli kavramsal ve varsayımsal girdiler ile sınayabilme ve çalışmalarını sürdürülebilirlik bağlamında değerlendirebilme ortamı sunulmuştur.
Bu çalışmanın birincil amacı, erken tasarım aşamasında Bina Bilgi Modelleme ortamlarının sunduğu yeni tasarım araçlarının, tasarımcıların ilk tasarım kararları üzerindeki etkisini sürdürülebilirlik bağlamında incelemek ve erişilen bulguları irdelemektir. Bu amaca ulaşabilmek için belirlenmiş olan araştırma soruları aşağıda paylaşılmıştır: 

  • Protokol çalışmalarında hangi fiziksel ve bilişsel tasarım eylemleri ne yoğunlukta ortaya çıkmaktadır? 
  • Katılımcıların bu çalışma süreçleri kapsamında gerçekleştirdikleri tasarım eylemlerinin dağılımı bağlamında, herhangi bir benzerlik veya farklılık tespit edilebilmekte midir? 
  • Bu bağlamda, Bina Bilgi Modelleme ortamının sağladığı geri beslemeler, erken tasarım kararlarının alınma sürecine ne gibi katkı ya da etkilerde bulunmaktadır?

References

  • Akın, O. ve Lin, C. (1995). Design protocol data and novel design decisions. Design Studies, 16(2), 211-236.
  • Architecture 2030. (n.d.). <http://goo.gl/o4FC5X>, erişim tarihi: 10.01.2018. Azhar, S., Brown, J., ve Farooqui, R. (2009). BIM-based sustainability analysis: An evaluation of building performance analysis software. Paper presented at the Proceedings of the 45th ASC Annual Conference.
  • Bianchi, G., Kowaltowski, D. C. ve Paiva, V. T. (2009). Methods that may stimulate creativity and their use in building design education. International Journal of Technology and Design Education, 20(4), 453-476.
  • Birleşmiş Milletler. (2017). World Population Prospects 2017. <https://goo.gl/48ujS6>, erişim tarihi: 10.01.2018.
  • Birleşmiş Milletler. (2005). Population Division of the Department of Economic and Social Affairs, World Population Prospects: The 2004 Revision.
  • Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta psychologica, 81(3), 211-241.
  • Crawley, D. B., Hand, J. W., Kummert, M. ve Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and environment, 43(4), 661-673.
  • Çavuşoğlu, Ö. H. (2019). Bina Bilgi Modelleme ile Erken Tasarım Aşamasında Karar Verme Süreçlerinin Değerlendirilmesi (Yayımlanmış Doktora Tezi). İstanbul Teknik Üniversitesi, Mimari Tasarımda Bilişim, İstanbul, Prof. Dr. Gülen Çağdaş.
  • Dorst, K. ve Dijkhuis, J. (1995). Comparing paradigms for describing design activity. Design Studies, 16(2), 261-274.
  • Edwards, W. (1962). Dynamic decision theory and probabilistic information processings. Human factors, 4(2), 59-74.
  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. MIT Press.
  • Flager, F., Welle, B., Bansal, P., Soremekun, G. ve Haymaker, J. (2009). Multidisciplinary process integration and design optimization of a classroom building. Journal of Information Technology in Construction, 14, 595-612.
  • Gero, J. S. ve Tang, H. H. (1999). Concurrent and retrospective protocols and computer-aided architectural design.
  • Gero, J. S. ve Tang, H. H. (2001). The differences between retrospective and concurrent protocols in revealing the process-oriented aspects of the design process. Design Studies, 22(3), 283-295.
  • Gervásio, H., Santos, P., Martins, R. ve Simões da Silva, L. (2014). A macrocomponent approach for the assessment of building sustainability in early stages of design. Building and Environment, 73, 256-270.
  • Goldschmidt, G. (2014). Linkography: unfolding the design process. MIT Press.
  • Gonzalez, C. (2005). Decision support for real-time, dynamic decision-making tasks. Organizational Behavior and Human Decision Processes, 96(2), 142-154.
  • Granadeiro, V., Correia, J. R., Leal, V. ve Duarte, J. P. (2013). Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages. Energy and Buildings, 61, 215-223.
  • Gratia, E. ve De Herde, A. (2003). Design of low energy office buildings. Energy and Buildings, 35(5), 473-491.
  • Hong, T., Chou, S. K. ve Bong, T. Y. (2000). Building simulation: an overview of developments and information sources. Building and environment, 35(4), 347-361.
  • Krygiel, E., Nies, B. (2008). Green BIM: successful sustainable design with building information modeling. John Wiley & Sons.
  • Kuusela, H. ve Paul, P. (2000). A comparison of concurrent and retrospective verbal protocol analysis. The American journal of psychology, 113, 3.
  • Kymmell, W. (2008). Building Information Modeling: Planning and Managing Construction Projects with 4D CAD and Simulations. McGraw Hill Professional.
  • Lerch, F. J. ve Harter, D. E. (2001). Cognitive support for real-time dynamic decision making. Information systems research, 12(1), 63-82.
  • Matthews, E., Amann, C., Bringezu, S., Hüttler, W., Ottke, C., Rodenburg, E., ... ve Weisz, H. (2000). The weight of nations-material outflows from industrial economies. In World Resources Institute.
  • Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information. Psychological Review, 63(2):81-97.
  • Radford, A.D. ve Gero, J. S. (1980). Tradeoff diagrams for the integrated design of the physical environment in buildings. Building and environment, 15(1), 3-15.
  • Schade, J., Olofsson, T. ve Schreyer, M. (2011). Decision-making in a modelbased design process. Construction Management & Economics, 29(4), 371-382. doi: 10.1080/01446193.2011.552510.
  • Schlueter, A. ve Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. Automation in Construction, 18(2), 153-163.
  • Smith, D. K. ve Tardif, M. (2009). Building information modeling: a strategic implementation guide for architects, engineers, constructors, and real estate asset managers. John Wiley & Sons.
  • The European Union. (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012. Official Journal of the European Union no. 55. doi: 10.3000/19770677.L_2012.315.eng.
  • van Someren, M. W., Barnard, Y. F. ve Sandberg, J. A. (1994). The think aloud method: A practical guide to modelling cognitive processes (Vol. 2). London: Academic Press.
  • Wang, Y. ve Ruhe, G. (2007). The cognitive process of decision making. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 1(2), 73-85.

EVALUATION OF DECISION MAKING PROCESSES IN THE EARLY DESIGN STAGE WITH BUILDING INFORMATION MODELING IN THE CONTEXT OF SUSTAINABILITY

Year 2020, Volume: 1 Issue: 2, 1 - 26, 31.03.2020

Abstract

Starting with the Industrial Revolution, there has been a change and development in world history at an unprecedented speed. As a result of the developments in the last fifty years, the emerging needs and the solutions implemented; global warming problem affecting the world globally, significant climate changes, ozone depletion, the danger of depletion of underground resources, increased energy consumption, and environmental pollution have emerged. Researches show that this situation is directly related to the field of architecture and particularly architectural design. To overcome this situation, new architectural design tools and approaches started to be developed. In this context, design tools for massing have been developed for Building Information Modeling environments and the conceptual analysis and simulations have been provided. Thus, the designers have been offered the environment to test their designs with certain conceptual and presumptive inputs and to evaluate their work in the context of sustainability even at the early design stage.
From this perspective, the primary aim of this study is to examine the impact of new design tools presented by Building Information Modeling environments on early design decisions in the context of sustainability and to examine the findings. The research questions identified to achieve this aim are as follows:

  • What intensity of physical and cognitive design actions occur in protocol studies?
  • Is it possible to identify any similarities or differences in the context of the distribution of design actions the participants have undertaken within the scope of these working processes?
  • In this context, how do feedbacks provided by the Building Information Modeling environment contribute to or influence early design decisions?

References

  • Akın, O. ve Lin, C. (1995). Design protocol data and novel design decisions. Design Studies, 16(2), 211-236.
  • Architecture 2030. (n.d.). <http://goo.gl/o4FC5X>, erişim tarihi: 10.01.2018. Azhar, S., Brown, J., ve Farooqui, R. (2009). BIM-based sustainability analysis: An evaluation of building performance analysis software. Paper presented at the Proceedings of the 45th ASC Annual Conference.
  • Bianchi, G., Kowaltowski, D. C. ve Paiva, V. T. (2009). Methods that may stimulate creativity and their use in building design education. International Journal of Technology and Design Education, 20(4), 453-476.
  • Birleşmiş Milletler. (2017). World Population Prospects 2017. <https://goo.gl/48ujS6>, erişim tarihi: 10.01.2018.
  • Birleşmiş Milletler. (2005). Population Division of the Department of Economic and Social Affairs, World Population Prospects: The 2004 Revision.
  • Brehmer, B. (1992). Dynamic decision making: Human control of complex systems. Acta psychologica, 81(3), 211-241.
  • Crawley, D. B., Hand, J. W., Kummert, M. ve Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and environment, 43(4), 661-673.
  • Çavuşoğlu, Ö. H. (2019). Bina Bilgi Modelleme ile Erken Tasarım Aşamasında Karar Verme Süreçlerinin Değerlendirilmesi (Yayımlanmış Doktora Tezi). İstanbul Teknik Üniversitesi, Mimari Tasarımda Bilişim, İstanbul, Prof. Dr. Gülen Çağdaş.
  • Dorst, K. ve Dijkhuis, J. (1995). Comparing paradigms for describing design activity. Design Studies, 16(2), 261-274.
  • Edwards, W. (1962). Dynamic decision theory and probabilistic information processings. Human factors, 4(2), 59-74.
  • Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. MIT Press.
  • Flager, F., Welle, B., Bansal, P., Soremekun, G. ve Haymaker, J. (2009). Multidisciplinary process integration and design optimization of a classroom building. Journal of Information Technology in Construction, 14, 595-612.
  • Gero, J. S. ve Tang, H. H. (1999). Concurrent and retrospective protocols and computer-aided architectural design.
  • Gero, J. S. ve Tang, H. H. (2001). The differences between retrospective and concurrent protocols in revealing the process-oriented aspects of the design process. Design Studies, 22(3), 283-295.
  • Gervásio, H., Santos, P., Martins, R. ve Simões da Silva, L. (2014). A macrocomponent approach for the assessment of building sustainability in early stages of design. Building and Environment, 73, 256-270.
  • Goldschmidt, G. (2014). Linkography: unfolding the design process. MIT Press.
  • Gonzalez, C. (2005). Decision support for real-time, dynamic decision-making tasks. Organizational Behavior and Human Decision Processes, 96(2), 142-154.
  • Granadeiro, V., Correia, J. R., Leal, V. ve Duarte, J. P. (2013). Envelope-related energy demand: A design indicator of energy performance for residential buildings in early design stages. Energy and Buildings, 61, 215-223.
  • Gratia, E. ve De Herde, A. (2003). Design of low energy office buildings. Energy and Buildings, 35(5), 473-491.
  • Hong, T., Chou, S. K. ve Bong, T. Y. (2000). Building simulation: an overview of developments and information sources. Building and environment, 35(4), 347-361.
  • Krygiel, E., Nies, B. (2008). Green BIM: successful sustainable design with building information modeling. John Wiley & Sons.
  • Kuusela, H. ve Paul, P. (2000). A comparison of concurrent and retrospective verbal protocol analysis. The American journal of psychology, 113, 3.
  • Kymmell, W. (2008). Building Information Modeling: Planning and Managing Construction Projects with 4D CAD and Simulations. McGraw Hill Professional.
  • Lerch, F. J. ve Harter, D. E. (2001). Cognitive support for real-time dynamic decision making. Information systems research, 12(1), 63-82.
  • Matthews, E., Amann, C., Bringezu, S., Hüttler, W., Ottke, C., Rodenburg, E., ... ve Weisz, H. (2000). The weight of nations-material outflows from industrial economies. In World Resources Institute.
  • Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Processing Information. Psychological Review, 63(2):81-97.
  • Radford, A.D. ve Gero, J. S. (1980). Tradeoff diagrams for the integrated design of the physical environment in buildings. Building and environment, 15(1), 3-15.
  • Schade, J., Olofsson, T. ve Schreyer, M. (2011). Decision-making in a modelbased design process. Construction Management & Economics, 29(4), 371-382. doi: 10.1080/01446193.2011.552510.
  • Schlueter, A. ve Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. Automation in Construction, 18(2), 153-163.
  • Smith, D. K. ve Tardif, M. (2009). Building information modeling: a strategic implementation guide for architects, engineers, constructors, and real estate asset managers. John Wiley & Sons.
  • The European Union. (2012). Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012. Official Journal of the European Union no. 55. doi: 10.3000/19770677.L_2012.315.eng.
  • van Someren, M. W., Barnard, Y. F. ve Sandberg, J. A. (1994). The think aloud method: A practical guide to modelling cognitive processes (Vol. 2). London: Academic Press.
  • Wang, Y. ve Ruhe, G. (2007). The cognitive process of decision making. International Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 1(2), 73-85.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Research Articles
Authors

Ömer Halil Çavuşoğlu

Gülen Çağdaş

Publication Date March 31, 2020
Published in Issue Year 2020 Volume: 1 Issue: 2

Cite

APA Çavuşoğlu, Ö. H., & Çağdaş, G. (2020). BİNA BİLGİ MODELLEME İLE ERKEN TASARIM AŞAMASINDA KARAR VERME SÜREÇLERİNİN SÜRDÜRÜLEBİLİRLİK BAĞLAMINDA DEĞERLENDİRİLMESİ. Journal of Computational Design, 1(2), 1-26.

88x31.png

The papers published in JCoDe are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.