Review
BibTex RIS Cite

A Proposal for Classification of Additive Manufacturing in Architecture

Year 2022, Volume: 3 Issue: 1, 105 - 134, 31.03.2022
https://doi.org/10.53710/jcode.1062155

Abstract

The latest developments in computational design has caused a massive paradigm shift in contemporary architecture. While the power of the new computational tools allow the designers to design fluid and dynamic transformational forms replacing the rigid norms of current processes, it also accelerates the integration of design and making. Digital manufacturing and in particular Additive Manufacturing (AM) has shown to have a big impact on how designers think of complex mechanisms and geometries while designing. This paper is motivated by the latest developments in Additive Manufacturing (AM) in large scale structures and the opportunities arising from manufacturing components, modules and even monolith buildings. This paper is part of a larger research on Additive Manufacturing (AM) and has evolved organically out of necessity while trying to map out the latest developments about large scale AM processes. The aim of this paper is to better understand and position the latest developments therefore challenges on a number of diverse subjects through a proposed classification method.

References

  • 3D Wasp. (2021, January 21). 3D printed house TECLA - eco-housing - 3D printers. https://www.3dwasp.com/en/3d-printed-house-tecla
  • AI-Build. (n.d.). Concrete Formwork. https://ai-build.com/concreteformwork.html
  • Apis Cor. (n.d.). 3D printer. https://www.apis-cor.com/3dprinter
  • ARUP. (n.d.). Lighting design for The Hague's Grote Marktstraat. https://www.arup.com/projects/grote-marktstraat
  • Batiprint3D. (n.d.). Shaping tomorrow. https://batiprint3D.fr/en
  • Bogue, R., (2014). Smart materials: a review of capabilities and applications. Assembly Automation, 34, 3–7.
  • Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J. G., & Thiede, S. (2015). Direct digital manufacturing: Definition, evolution, and sustainability implications. Journal of Cleaner Production, 107, 615-625. https://doi.org/10.1016/j.jclepro.2015.05.009
  • DFAB HOUSE. (n.d.). Smart Slab. https://dfabhouse.ch/smart-slab
  • Dbt. (2019, May 6). Digital metal: Deep facade. https://dbt.arch.ethz.ch/project/digital-metal-deep-facade/
  • D-shape. (n.d.). Retrieved March 2, 2019, from https://www.d-shape.com
  • Emerging Objects. (n.d.). Saltygloo. https://www.emergingobjects.com/project/saltygloo
  • Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. https://doi.org/10.1016/j.jclepro.2016.04.150
  • Gardiner, J. B. (2011). Exploring the Emerging Design Territory of Construction 3D Printing [Doctoral dissertation]. https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Exploring-the-emerging-design-territory-of/9921861544001341
  • Goldberg, D., (2018) History of 3D Printing: It’s Older Than You Are, Redshift by Autodesk. Retrieved March 2, 2019, from https://www.autodesk.com/redshift/history-of-3D-printing/
  • Gramazio, F., Kohler, M., (2008) Digital materiality in architecture. Lars Müller Publishers, Baden
  • Grigoriadis, K., (2019). Computational Blends: The Epistemology of Designing with Functionally Graded Materials, The Journal of Architecture, 2019
  • Hack, N., Lauer, W., Langenberg, S., Gramazio, F., & Kohler, M. (2013). Overcoming repetition: Robotic fabrication processes at a large scale. International Journal of Architectural Computing, 11(3), 285-299. https://doi.org/10.1260/1478-0771.11.3.285
  • Hitti, N. (2018, October 5). Neri Oxman's swarm of Fiberbots autonomously build architectural structures. Dezeen. https://www.dezeen.com/2018/10/05/neri-oxman-fiberbots-mediated-matter-lab-mit-architectural-structures
  • IAAC. (2018, October 11). Minibuilders - Institute for advanced architecture of Cataloni. https://iaac.net/project/minibuilders/
  • Jiménez, M., Romero, L., Domínguez, I. A., Espinosa, M. D., & Domínguez, M. (2019). Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity, 2019, 1-30. https://doi.org/10.1155/2019/9656938
  • Kayser, M., Cai, L., Falcone, S., Bader, C., Inglessis, N., Darweesh, B., & Oxman, N. (2018). Fiberbots: An autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics, 2(1-4), 67-79. https://doi.org/10.1007/s41693-018-0013-y
  • Khoo, Z. X., Teoh, J. E., Liu, Y., Chua, C. K., Yang, S., An, J., Leong, K. F., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10(3), 103-122. https://doi.org/10.1080/17452759.2015.1097054
  • Khoo, C.K., Shin, J. W. , (2018) Designing with Biomaterials for Responsive ArchitectureA soft responsive “bio-structural” hydrogel skin. Material Studies, 2.
  • Khoshnevis, B., Hwang, D., Yao, K. T., & Yeh, Z. (2006). Mega-scale fabrication by contour crafting. International Journal of Industrial and Systems Engineering, 1(3), 301. https://doi.org/10.1504/ijise.2006.009791
  • Kidwell, J. (2017). Best Practices and Applications of 3D Printing in the Construction Industry, California Polytechnic State UniversitySan Luis Obispo, California
  • Kolarevic, B., (2003). Architecture in the Digital Age: Design and Manufacturing, Taylor & Francis.
  • Kruth, J.P., Leu, M.C., Nakagawa, T., (1998). Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47 (2), 525-540.
  • Labonnote, N., Rønnquist, A., Manum, B., & Rüther, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72, 347-366. https://doi.org/10.1016/j.autcon.2016.08.026
  • Leo, D.J., (2007). Engineering analysis of smart material systems. Hoboken, NJ, Canada: John Wiley & Sons, Inc.
  • Lim, S., Le, T., Webster, J., Buswell, R., S. Austin, R. Gibb, A., Thorpe, T., (2009) Fabricatin construction components using layer manufacturing technology, Global Innovation in Construction Conference, Loughborough University, 9, 13–16 .
  • Lim, S., Buswell, R., Le, T., Austin, S., Gibb, A., & Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21, 262-268. https://doi.org/10.1016/j.autcon.2011.06.010
  • Martins, P. F., José P. S. (2014) Digital Fabrication Technology in Concrete Architecture., In Fusion, Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, 475-484. Vol. 1. eCAADe: Conferences 1.
  • Material District. (2017, April 5). Complex concrete column made using 3D printed formwork. https://materialdistrict.com/article/complex-concrete-column-3d-printed-formwork
  • Menges, A. (2015). Fusing the computational and the physical: Towards a novel material culture. Architectural Design, 85(5), 8-15. https://doi.org/10.1002/ad.1947
  • Monzón, M. D., Ortega, Z., Martínez, A., & Ortega, F. (2015). Standardization in additive manufacturing: Activities carried out by international organizations and projects. The International Journal of Advanced Manufacturing Technology, 76(5-8), 1111-1121. https://doi.org/10.1007/s00170-014-6334-1
  • Moon, M., (2014) What you need to know about 3D-printed organs, Engadget, Retrieved March 2, 2019, from https://www.engadget.com/2014/06/20/3D-printed-organ-explainer/
  • MX3D. (n.d.). Bridge - Introducing the advantages of 3D metal printing to new high-impact industries. https://mx3D.com/projects/bridge-2 Naboni, R., Kunic, A., Breseghello, L., Paoletti, I., (2017). Load-Responsive Cellular Envelopes with Additive Manufacturing.
  • Ngo, T., Kashani, A., Imbalzano, G., Nguyena, K., Hui, D. (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172-196.
  • Oxman, N., Laucks, J., Kayser, M., Duro-Royo, J., & Uribe, C. G. (2017). Silk pavilion: A Case Study in Fiber-based Digital Fabrication. Fabricate 2014, 248-255. https://doi.org/10.2307/j.ctt1tp3c5w.34
  • Paoletti, I., Ceccon, L,. (2018) The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques, 3D Printing, Milan.
  • Paull, B., (2017) The Evolution of 3D Printing, Separation Science: The State of the Art, LC-GC Europe.
  • Pegna, J., (1997). Exploratory investigation of solid freeform construction, Automation in Construction, 5(5), 427–437
  • Prakash, K. S., Nancharaih, T., & Rao, V. S. (2018). Additive manufacturing techniques in manufacturing -an overview. Materials Today: Proceedings, 5(2), 3873-3882. https://doi.org/10.1016/j.matpr.2017.11.642
  • Prentice, S. (2014). The five SMART technologies to Watch. Retrieved March 2, 2019, from https://www.gartner.com/doc/2669320?ref=unauthreader.
  • Salazar, B., Aghdasi, P., Williams, I. D., Ostertag, C. P., & Taylor, H. K. (2020). Polymer lattice-reinforcement for enhancing ductility of concrete. Materials & Design, 196, 109184. https://doi.org/10.1016/j.matdes.2020.109184
  • Sartipi, F., & Sartipi, A. (2020). Brief review on advancements additive manufacturing. Journal of Construction Materials, 1(2). https://doi.org/10.36756/jcm.v1.2.4
  • De Schutter, G., Lesage, K., Mechtcherine, V., Nerella, V. N., Habert, G., & Agusti-Juan, I. (2018). Vision of 3D printing with concrete — Technical, economic and environmental potentials. Cement and Concrete Research, 112, 25-36. https://doi.org/10.1016/j.cemconres.2018.06.001
  • Snooks, R. (2013). Fibrous Assemblages and Behavioral Composites. RMIT University.
  • Stott, R. (2014, June 17). IAAC invents a family of robots to 3D print structures of any size. ArchDaily. https://www.archdaily.com/517378/iaac-invents-a-family-of-robots-to-3D-print-structures-of-any-size
  • Strauss, H. (2013). AM envelope: The potential of additive manufacturing for facade constructions. TU Delft.
  • Striatus. (n.d.). 3D Concrete Printed masonry. https://www.striatusbridge.com
  • Tamke, M., Stasiuk, D., Thomsen, M.R., (2014) The Rise: Building With Fibrous Systems, Fabricate 2014, UCL Press
  • The American Society for Material and Testing, (2009) Standard Terminology for Additive Manufacturing Technologies, F2792(12a), ASTM International, West Consholhocken, USA.
  • Tibbits, S. (2014). 4D printing: Multi-material shape change. Architectural Design, 84(1), 116-121. https://doi.org/10.1002/ad.1710
  • Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001
  • Turner, B. (2009, June 22). Radiolaria pavilion by Shiro Studio. Dezeen. https://www.dezeen.com/2009/06/22/radiolaria-pavilion-by-shiro-studio
  • Varadan, V.K., Vinoy, K. J., Gopalakrishnan, S. (2006) Smart Material Systems and MEMS: Design and Development Methodologies, Wiley and Sons.
  • Varotsis, A. B., (2018) Manufacturing Processes Explained, 3D Hubs, Retrieved March 5, 2019, from https://www.3Dhubs.com/knowledge-base
  • Yin, R. K. (2003). Case study research: design and methods. London, Sage.

Mimaride Eklemeli Üretim Sistemlerinin Sınıflandırması için bir Öneri

Year 2022, Volume: 3 Issue: 1, 105 - 134, 31.03.2022
https://doi.org/10.53710/jcode.1062155

Abstract

Dijital ve hesaplamalı tasarımdaki en son gelişmeler çağdaş mimarlıkta paradigma kaymasına sebep olmuştur. Yeni hesaplamalı tasarım araçları mimarın tasarım esnasında kullandığı form yelpazesini genişletmiş ve rijit formlar yerine daha akışkan ve dinamik formlar kullanmasına imkan sağlamıştır. Ancak yeni hesaplamalı tasarım araçları çağdaş mimarinin sadece form yelpazesini genişletmekle kalmamış aynı zamanda tasarlama ve yapma eylemlerinin arasındaki kopuşu sonlandırma gücüne sahip olmuştur. Dijital üretim teknikleri ve özellikle de Eklemeli Üretim teknikleri karmaşık geometrilerin üretimini kolaylaştırdığı için tasarımcıların tasarım esnasında düşünme biçimlerini de etkilemiştir. Yapı ölçeğinde Eklemeli Üretim sistemlerinde kaydedilen gelişmeler ve bu gelişmelerden doğan fırsatlar bu makalenin arkasındaki ana itici güç olmuştur. Makale Eklemeli Üretim sistemleri üzerine yürütülmüş daha geniş kapsamlı bir araştırmanın parçası olup, en son gelişmelerin anlaşılması ve daha büyük resimde sağlıklı bir şekilde konumlandırılabilme ihtıyacı sonucu ortaya çıkmıştır. Önerilen sınıflandırma yöntemi ile en son gelişmeler ve uygulamada çözülmeye çalışılan sorunlar geniş bir yelpazedeki araştırmalar içinde daha iyi konumlandırılması hedeflenmiştir.

References

  • 3D Wasp. (2021, January 21). 3D printed house TECLA - eco-housing - 3D printers. https://www.3dwasp.com/en/3d-printed-house-tecla
  • AI-Build. (n.d.). Concrete Formwork. https://ai-build.com/concreteformwork.html
  • Apis Cor. (n.d.). 3D printer. https://www.apis-cor.com/3dprinter
  • ARUP. (n.d.). Lighting design for The Hague's Grote Marktstraat. https://www.arup.com/projects/grote-marktstraat
  • Batiprint3D. (n.d.). Shaping tomorrow. https://batiprint3D.fr/en
  • Bogue, R., (2014). Smart materials: a review of capabilities and applications. Assembly Automation, 34, 3–7.
  • Chen, D., Heyer, S., Ibbotson, S., Salonitis, K., Steingrímsson, J. G., & Thiede, S. (2015). Direct digital manufacturing: Definition, evolution, and sustainability implications. Journal of Cleaner Production, 107, 615-625. https://doi.org/10.1016/j.jclepro.2015.05.009
  • DFAB HOUSE. (n.d.). Smart Slab. https://dfabhouse.ch/smart-slab
  • Dbt. (2019, May 6). Digital metal: Deep facade. https://dbt.arch.ethz.ch/project/digital-metal-deep-facade/
  • D-shape. (n.d.). Retrieved March 2, 2019, from https://www.d-shape.com
  • Emerging Objects. (n.d.). Saltygloo. https://www.emergingobjects.com/project/saltygloo
  • Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573-1587. https://doi.org/10.1016/j.jclepro.2016.04.150
  • Gardiner, J. B. (2011). Exploring the Emerging Design Territory of Construction 3D Printing [Doctoral dissertation]. https://researchrepository.rmit.edu.au/esploro/outputs/doctoral/Exploring-the-emerging-design-territory-of/9921861544001341
  • Goldberg, D., (2018) History of 3D Printing: It’s Older Than You Are, Redshift by Autodesk. Retrieved March 2, 2019, from https://www.autodesk.com/redshift/history-of-3D-printing/
  • Gramazio, F., Kohler, M., (2008) Digital materiality in architecture. Lars Müller Publishers, Baden
  • Grigoriadis, K., (2019). Computational Blends: The Epistemology of Designing with Functionally Graded Materials, The Journal of Architecture, 2019
  • Hack, N., Lauer, W., Langenberg, S., Gramazio, F., & Kohler, M. (2013). Overcoming repetition: Robotic fabrication processes at a large scale. International Journal of Architectural Computing, 11(3), 285-299. https://doi.org/10.1260/1478-0771.11.3.285
  • Hitti, N. (2018, October 5). Neri Oxman's swarm of Fiberbots autonomously build architectural structures. Dezeen. https://www.dezeen.com/2018/10/05/neri-oxman-fiberbots-mediated-matter-lab-mit-architectural-structures
  • IAAC. (2018, October 11). Minibuilders - Institute for advanced architecture of Cataloni. https://iaac.net/project/minibuilders/
  • Jiménez, M., Romero, L., Domínguez, I. A., Espinosa, M. D., & Domínguez, M. (2019). Additive manufacturing technologies: An overview about 3D printing methods and future prospects. Complexity, 2019, 1-30. https://doi.org/10.1155/2019/9656938
  • Kayser, M., Cai, L., Falcone, S., Bader, C., Inglessis, N., Darweesh, B., & Oxman, N. (2018). Fiberbots: An autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics, 2(1-4), 67-79. https://doi.org/10.1007/s41693-018-0013-y
  • Khoo, Z. X., Teoh, J. E., Liu, Y., Chua, C. K., Yang, S., An, J., Leong, K. F., & Yeong, W. Y. (2015). 3D printing of smart materials: A review on recent progresses in 4D printing. Virtual and Physical Prototyping, 10(3), 103-122. https://doi.org/10.1080/17452759.2015.1097054
  • Khoo, C.K., Shin, J. W. , (2018) Designing with Biomaterials for Responsive ArchitectureA soft responsive “bio-structural” hydrogel skin. Material Studies, 2.
  • Khoshnevis, B., Hwang, D., Yao, K. T., & Yeh, Z. (2006). Mega-scale fabrication by contour crafting. International Journal of Industrial and Systems Engineering, 1(3), 301. https://doi.org/10.1504/ijise.2006.009791
  • Kidwell, J. (2017). Best Practices and Applications of 3D Printing in the Construction Industry, California Polytechnic State UniversitySan Luis Obispo, California
  • Kolarevic, B., (2003). Architecture in the Digital Age: Design and Manufacturing, Taylor & Francis.
  • Kruth, J.P., Leu, M.C., Nakagawa, T., (1998). Progress in additive manufacturing and rapid prototyping. CIRP Ann. Manuf. Technol. 47 (2), 525-540.
  • Labonnote, N., Rønnquist, A., Manum, B., & Rüther, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72, 347-366. https://doi.org/10.1016/j.autcon.2016.08.026
  • Leo, D.J., (2007). Engineering analysis of smart material systems. Hoboken, NJ, Canada: John Wiley & Sons, Inc.
  • Lim, S., Le, T., Webster, J., Buswell, R., S. Austin, R. Gibb, A., Thorpe, T., (2009) Fabricatin construction components using layer manufacturing technology, Global Innovation in Construction Conference, Loughborough University, 9, 13–16 .
  • Lim, S., Buswell, R., Le, T., Austin, S., Gibb, A., & Thorpe, T. (2012). Developments in construction-scale additive manufacturing processes. Automation in Construction, 21, 262-268. https://doi.org/10.1016/j.autcon.2011.06.010
  • Martins, P. F., José P. S. (2014) Digital Fabrication Technology in Concrete Architecture., In Fusion, Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, 475-484. Vol. 1. eCAADe: Conferences 1.
  • Material District. (2017, April 5). Complex concrete column made using 3D printed formwork. https://materialdistrict.com/article/complex-concrete-column-3d-printed-formwork
  • Menges, A. (2015). Fusing the computational and the physical: Towards a novel material culture. Architectural Design, 85(5), 8-15. https://doi.org/10.1002/ad.1947
  • Monzón, M. D., Ortega, Z., Martínez, A., & Ortega, F. (2015). Standardization in additive manufacturing: Activities carried out by international organizations and projects. The International Journal of Advanced Manufacturing Technology, 76(5-8), 1111-1121. https://doi.org/10.1007/s00170-014-6334-1
  • Moon, M., (2014) What you need to know about 3D-printed organs, Engadget, Retrieved March 2, 2019, from https://www.engadget.com/2014/06/20/3D-printed-organ-explainer/
  • MX3D. (n.d.). Bridge - Introducing the advantages of 3D metal printing to new high-impact industries. https://mx3D.com/projects/bridge-2 Naboni, R., Kunic, A., Breseghello, L., Paoletti, I., (2017). Load-Responsive Cellular Envelopes with Additive Manufacturing.
  • Ngo, T., Kashani, A., Imbalzano, G., Nguyena, K., Hui, D. (2018) Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering, 143, 172-196.
  • Oxman, N., Laucks, J., Kayser, M., Duro-Royo, J., & Uribe, C. G. (2017). Silk pavilion: A Case Study in Fiber-based Digital Fabrication. Fabricate 2014, 248-255. https://doi.org/10.2307/j.ctt1tp3c5w.34
  • Paoletti, I., Ceccon, L,. (2018) The Evolution of 3D Printing in AEC: From Experimental to Consolidated Techniques, 3D Printing, Milan.
  • Paull, B., (2017) The Evolution of 3D Printing, Separation Science: The State of the Art, LC-GC Europe.
  • Pegna, J., (1997). Exploratory investigation of solid freeform construction, Automation in Construction, 5(5), 427–437
  • Prakash, K. S., Nancharaih, T., & Rao, V. S. (2018). Additive manufacturing techniques in manufacturing -an overview. Materials Today: Proceedings, 5(2), 3873-3882. https://doi.org/10.1016/j.matpr.2017.11.642
  • Prentice, S. (2014). The five SMART technologies to Watch. Retrieved March 2, 2019, from https://www.gartner.com/doc/2669320?ref=unauthreader.
  • Salazar, B., Aghdasi, P., Williams, I. D., Ostertag, C. P., & Taylor, H. K. (2020). Polymer lattice-reinforcement for enhancing ductility of concrete. Materials & Design, 196, 109184. https://doi.org/10.1016/j.matdes.2020.109184
  • Sartipi, F., & Sartipi, A. (2020). Brief review on advancements additive manufacturing. Journal of Construction Materials, 1(2). https://doi.org/10.36756/jcm.v1.2.4
  • De Schutter, G., Lesage, K., Mechtcherine, V., Nerella, V. N., Habert, G., & Agusti-Juan, I. (2018). Vision of 3D printing with concrete — Technical, economic and environmental potentials. Cement and Concrete Research, 112, 25-36. https://doi.org/10.1016/j.cemconres.2018.06.001
  • Snooks, R. (2013). Fibrous Assemblages and Behavioral Composites. RMIT University.
  • Stott, R. (2014, June 17). IAAC invents a family of robots to 3D print structures of any size. ArchDaily. https://www.archdaily.com/517378/iaac-invents-a-family-of-robots-to-3D-print-structures-of-any-size
  • Strauss, H. (2013). AM envelope: The potential of additive manufacturing for facade constructions. TU Delft.
  • Striatus. (n.d.). 3D Concrete Printed masonry. https://www.striatusbridge.com
  • Tamke, M., Stasiuk, D., Thomsen, M.R., (2014) The Rise: Building With Fibrous Systems, Fabricate 2014, UCL Press
  • The American Society for Material and Testing, (2009) Standard Terminology for Additive Manufacturing Technologies, F2792(12a), ASTM International, West Consholhocken, USA.
  • Tibbits, S. (2014). 4D printing: Multi-material shape change. Architectural Design, 84(1), 116-121. https://doi.org/10.1002/ad.1710
  • Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Materials Today, 21(1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001
  • Turner, B. (2009, June 22). Radiolaria pavilion by Shiro Studio. Dezeen. https://www.dezeen.com/2009/06/22/radiolaria-pavilion-by-shiro-studio
  • Varadan, V.K., Vinoy, K. J., Gopalakrishnan, S. (2006) Smart Material Systems and MEMS: Design and Development Methodologies, Wiley and Sons.
  • Varotsis, A. B., (2018) Manufacturing Processes Explained, 3D Hubs, Retrieved March 5, 2019, from https://www.3Dhubs.com/knowledge-base
  • Yin, R. K. (2003). Case study research: design and methods. London, Sage.
There are 59 citations in total.

Details

Primary Language English
Subjects Architecture
Journal Section Review
Authors

Yeşim Ünal

Gülen Çağdaş

Publication Date March 31, 2022
Published in Issue Year 2022 Volume: 3 Issue: 1

Cite

APA Ünal, Y., & Çağdaş, G. (2022). A Proposal for Classification of Additive Manufacturing in Architecture. Journal of Computational Design, 3(1), 105-134. https://doi.org/10.53710/jcode.1062155

88x31.png

The papers published in JCoDe are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.