Research Article
BibTex RIS Cite
Year 2017, Volume: 2 Issue: 1, 28 - 32, 15.06.2017

Abstract

References

  • J. R. Busemeyer, P.D. Bruza, Quantum Models of Cognition and Decision, Cambridge University Press, 2012 .
  • A. N. Kolmogorov, Foundations of the theory of probability, Chealsea publishing, New York, 1993.
  • A. Tversky and E. Shafir, “The disjunction effect in choice under uncertainity”, Psychological Science, vol. 3, pp. 305-309, 1992.
  • V. Rajaman, “John McCarthy –Father of artificial intelligence “ Asia Pacific Mathematics News Letter, vol. 4 No. 3 July, 2014.
  • Rosenblatt F., “The perceptron : A Probabilistic model for information storage and organization in the brain”, Psychological Review vol. 65 ,pp. 386-408, 1958.
  • M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information”, Science vol. 332, , pp. 60–65, 2011.
  • F. Petruccione et. al., “An Introduction to quantum machine learning”, Contemporary Physics, vol. 56 No. 2 , pp. 172-185, 2015.
  • G.G. Rigatos and S.G. Tzafestas, “Neurodynamics and attractors in quantum associative memories”, Integr. Comput-Aided Eng. Vol. 14, pp. 225–242, 2007.
  • E.C. Behrman and J.E. Steck, “A quantum neural network computes its own relative phase”, IEEE Symposium Series on Computational Intelligence , Singapore, April 15–19, 2013.
  • S. Gupta and R. Zia, “Quantum neural networks”, J. Comput. Syst. Sci. Vol. 63 , pp. 355–383, 2011.
  • O. S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for supervised and unsupervised machine learning”, preprint arXiv:1307.0411 (2013).
  • P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Let. Vol. 113 , pp. 1305031–130503-5, 2014.
  • H. Neven, V.S. Denchev, G. Rose, and W.G. Macready, “Training a large scale classifier with the quantum adiabatic algorithm”, preprint arXiv:0912.0779 , 2009.
  • J. Mehra, H. Rechenberg ; The historical development of quantum theory, Springer-Verlag, New York , 1982.
  • E. Schrödinger, “The present situation in quantum mechanics”, Naturwissenschaften, vol. 23, 807-823, 1935.
  • P. E. Vermaas., Philosopher’s understanding of quantum Mechanics, 1st ed., Cambridge University Press., New York, 1999.
  • J. Baggot, Beyond the measure, 1st ed.., Oxford University Press., New York, 2004.
  • A. Einstein., B. Podolsky, N. Rosen, “Can Quantum mechanical description of physical reality be considered complete?”, Physical Rewiew, vol. 47,pp. 777-780, 1935.
  • J. S. Bell, “On the Einstein-Podolsky-Rosen paradox”, Physics, vol. 1, 195, 1964.
  • A. Aspect, J. Dalibard, G. Roger, “Experimental test of Bell’s Inequalities using time-varying analyzers”, Phys. Rev. Lett., vol. 49, pp. 1804–1807, 1982.
  • K. Horodecki et al, Quantum entanglement, Rev. Mod. Phys. Vol. 81, 865, 2009.
  • C.H. Bennet, G. Brassard, W. Wooters , “Teleporting an unknown quantum state via dual classical EPR channels”, Phys. Rev. Lett., vol. 70, 1895-1899, 1993.
  • C.H. Bennet, S.J. Wiesner, “Communication via one and two-particle operators on Einstein-Podolsky-Rosen states”, Phys. Rev. Lett. Vol. 69, pp. 2881-2884, 1992.
  • C.H. Bennet, G. Brassard, “Quantum cryptography: Public key distribution and coin tossing”, In Proceedings of IEEE International conference on computers systems and signal processing, pp. 175-179, 1984.
  • G. E. Moore, “Cramming more components onto integrated circuits”, Electronics magazine, vol. 38, 1965.
  • C. P. Williams, S. H. Clearwater, Explorations in Quantum computing, Springer, 1998.
  • P. Benioff, “The computer as a physical system: a microscopical quantum mechanical Hamiltonian model of computers as represented by Turing Machines”, J. Stat. Phys. Vol. 22 , 563.
  • R. P. Feynman, “Simulating physics with computers, International Journal of Theoretical Physics”, vol. 21, pp. 467-488, 1982.
  • D. Deutsch, “Quantum theory, the Church-Turing pinciple and the universal Quantum Computer”, Proc. R. Soc. Lond. A, vol. pp. 400, 97117, 1985.
  • P.W. Shor, “Fault-tolerant quantum computation. In Proceedings”, 37th Annual Symposium on Fundementals of Computer Science, IEEE Press, Los Alamitos CA, pp. 56-65, 1996.

COGNITIVE SYSTEMS AND QUANTUM COMPUTATION

Year 2017, Volume: 2 Issue: 1, 28 - 32, 15.06.2017

Abstract

This review presents an overview of cognitive systems, quantum phenomena and possible connections between them. The focus will be the artificial cognitive systems and briefly touch the discussion of possible benefits from quantum counterparts. The nonclassical features of Quantum Theory introduced as quantum resources which enables possible speed ups or advantages over classical computational tasks. Quantum computation is introduced as a powerful computational tool over its classical counterparts by also covering possible applications of cognitive phenomena in the framework of quantum cognition. Also different attempts in order to implement decision making processes for cognitive purposes mentioned. 

References

  • J. R. Busemeyer, P.D. Bruza, Quantum Models of Cognition and Decision, Cambridge University Press, 2012 .
  • A. N. Kolmogorov, Foundations of the theory of probability, Chealsea publishing, New York, 1993.
  • A. Tversky and E. Shafir, “The disjunction effect in choice under uncertainity”, Psychological Science, vol. 3, pp. 305-309, 1992.
  • V. Rajaman, “John McCarthy –Father of artificial intelligence “ Asia Pacific Mathematics News Letter, vol. 4 No. 3 July, 2014.
  • Rosenblatt F., “The perceptron : A Probabilistic model for information storage and organization in the brain”, Psychological Review vol. 65 ,pp. 386-408, 1958.
  • M. Hilbert and P. López, “The world’s technological capacity to store, communicate, and compute information”, Science vol. 332, , pp. 60–65, 2011.
  • F. Petruccione et. al., “An Introduction to quantum machine learning”, Contemporary Physics, vol. 56 No. 2 , pp. 172-185, 2015.
  • G.G. Rigatos and S.G. Tzafestas, “Neurodynamics and attractors in quantum associative memories”, Integr. Comput-Aided Eng. Vol. 14, pp. 225–242, 2007.
  • E.C. Behrman and J.E. Steck, “A quantum neural network computes its own relative phase”, IEEE Symposium Series on Computational Intelligence , Singapore, April 15–19, 2013.
  • S. Gupta and R. Zia, “Quantum neural networks”, J. Comput. Syst. Sci. Vol. 63 , pp. 355–383, 2011.
  • O. S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum algorithms for supervised and unsupervised machine learning”, preprint arXiv:1307.0411 (2013).
  • P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vector machine for big data classification, Phys. Rev. Let. Vol. 113 , pp. 1305031–130503-5, 2014.
  • H. Neven, V.S. Denchev, G. Rose, and W.G. Macready, “Training a large scale classifier with the quantum adiabatic algorithm”, preprint arXiv:0912.0779 , 2009.
  • J. Mehra, H. Rechenberg ; The historical development of quantum theory, Springer-Verlag, New York , 1982.
  • E. Schrödinger, “The present situation in quantum mechanics”, Naturwissenschaften, vol. 23, 807-823, 1935.
  • P. E. Vermaas., Philosopher’s understanding of quantum Mechanics, 1st ed., Cambridge University Press., New York, 1999.
  • J. Baggot, Beyond the measure, 1st ed.., Oxford University Press., New York, 2004.
  • A. Einstein., B. Podolsky, N. Rosen, “Can Quantum mechanical description of physical reality be considered complete?”, Physical Rewiew, vol. 47,pp. 777-780, 1935.
  • J. S. Bell, “On the Einstein-Podolsky-Rosen paradox”, Physics, vol. 1, 195, 1964.
  • A. Aspect, J. Dalibard, G. Roger, “Experimental test of Bell’s Inequalities using time-varying analyzers”, Phys. Rev. Lett., vol. 49, pp. 1804–1807, 1982.
  • K. Horodecki et al, Quantum entanglement, Rev. Mod. Phys. Vol. 81, 865, 2009.
  • C.H. Bennet, G. Brassard, W. Wooters , “Teleporting an unknown quantum state via dual classical EPR channels”, Phys. Rev. Lett., vol. 70, 1895-1899, 1993.
  • C.H. Bennet, S.J. Wiesner, “Communication via one and two-particle operators on Einstein-Podolsky-Rosen states”, Phys. Rev. Lett. Vol. 69, pp. 2881-2884, 1992.
  • C.H. Bennet, G. Brassard, “Quantum cryptography: Public key distribution and coin tossing”, In Proceedings of IEEE International conference on computers systems and signal processing, pp. 175-179, 1984.
  • G. E. Moore, “Cramming more components onto integrated circuits”, Electronics magazine, vol. 38, 1965.
  • C. P. Williams, S. H. Clearwater, Explorations in Quantum computing, Springer, 1998.
  • P. Benioff, “The computer as a physical system: a microscopical quantum mechanical Hamiltonian model of computers as represented by Turing Machines”, J. Stat. Phys. Vol. 22 , 563.
  • R. P. Feynman, “Simulating physics with computers, International Journal of Theoretical Physics”, vol. 21, pp. 467-488, 1982.
  • D. Deutsch, “Quantum theory, the Church-Turing pinciple and the universal Quantum Computer”, Proc. R. Soc. Lond. A, vol. pp. 400, 97117, 1985.
  • P.W. Shor, “Fault-tolerant quantum computation. In Proceedings”, 37th Annual Symposium on Fundementals of Computer Science, IEEE Press, Los Alamitos CA, pp. 56-65, 1996.
There are 30 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Articles
Authors

Deniz Turkpence 0000-0002-8491-586X

Publication Date June 15, 2017
Published in Issue Year 2017 Volume: 2 Issue: 1

Cite

APA Turkpence, D. (2017). COGNITIVE SYSTEMS AND QUANTUM COMPUTATION. The Journal of Cognitive Systems, 2(1), 28-32.