Research Article
BibTex RIS Cite
Year 2017, Volume: 2 Issue: 2, 51 - 54, 01.12.2017

Abstract

References

  • [1] S. Sanei, and J.A. Chambers, “EEG signal provessing.", John Wiley. Sons Ltd. 2007.
  • [2] T. Beyrouthy, S. Al Kork, J. Akl Korbane and M. Abouelela., ‘‘EEG Mind Controlled Smart Prosthetic Arm’’ Advances in Science, Technology and Engineering Systems Journal vol. 2, No. 3, pp. 891-899, 2017.
  • [3] H. A. Shedeed, M.F. Issa, S.M. El-sayed, “Brain EEG Signal Processing For Controlling a Robotic Arm ” All content following this page was uploaded by Mohamed F. Issa on 17 May. 2015.
  • [4] R. Roy, M. Mahadevappa , C.S. Kumar, “Trajectory path planning of EEG controlled robotic arm using GA”, Procedia Computer Science vol. 84, pp.147-151, 2016.
  • [5] L. Kauhanen, P. Jylanki, J. Lehtonen, P. Rantanen, H. Alaranta, and M. Sams, "EEG-Based Brain-Computer Interface for Tetraplegics," Hindawi Publishing CorporationComputational Intelligence and Neuroscience, Volume 2007, Article ID 23864, 11pages doi:10.1155/2007/23864.
  • [6] N.E. Crone, D.L. Miglioretti, B. Gordon, et al., “Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band”. Brain, vol. 121, pp. 2301–2315, 1998.
  • [7] G. Pfurtscheller, C. Neuper, D. Flotzinger, et al., “EEG-based discrimination between imagination of right and left hand movement”. Electroencephalogr Clin Neurophysiol, vol. 103, pp. 642–651, 1997.
  • [8] https://www.cognifit.com/tr/brain, 31/05/2017.
  • [9] http://www.yenibiyoloji.com/beyin-yapisi-ozellikleri-beynin-bolumleri-ve-kisimlari-1605/, 03/06/2018.
  • [10] http://www.biyolojidefteri.com/index.php/glia-hucreleri, 04/06/2018.
  • [11] https://kindyroo.net/ebeveyn-akademisi/2016/11/18/beyin-gelisimi-gebelikten-3-yasa-kadar/, 01/06/2018.
  • [12] Brain Wave Signal (EEG) of NeuroSky, Inc. 2009.
  • [13] http://www.kuark.org/2012/09/elektromanyetik-dalgalar-ve-zihin-kontrolu/, 01/06/2017.
  • [14] Vidal,J, J, “Direct braincomputer communication”, Ann. Rev. Biophys. Bioengng, vol. 2, pp. 157-158, 1973.
  • [15] Vidal, J, J, ‘Real-time detection of brain events in EEG’, IEEE Proc., vol. 65, pp. 633– 664, 1977.
  • [16] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. Nicolelis, ,“Real-time control of a robot arm using simultaneous recorded neurons in the motor cortex”, Nature Neurosci., vol. 2, pp. 664-670 1999.
  • [17] M. A. Lebedev, and M. A. L. Nicolelis, ‘‘ Brain-machine interfaces: past, present and future’’, Trends in Neurosci., vol. 29, p. 9, 2006.
  • [18] https://rewiringtinnitus.com/science-brainwave-entrainment/
  • [19] P. He, G. Wilson, and C. Russell, ‘Removal of ocular artifacts from electroencephalogram by adaptive filtering’, Medical and Biological Engineering and Computing, vol. 42, pp 407 412, 2004.
  • [20] P. Shooshtari, G. Mohamadi, B. M. Ardekani, and M. B. Shamsollahi, “Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling”, Proceedıngs Of World Academy Of Scıence, Engıneerıng And Technology, vol.11, pp 277-280, 2006.

ROBOTIC ARM CONTROL USING THE BRAIN WAVES

Year 2017, Volume: 2 Issue: 2, 51 - 54, 01.12.2017

Abstract

Although the human
brain has not solved the mystery in full, significant progress has been made as
a result of scientific studies on the brain. Through the electrodes connected
to the human brain, the EEG signs of our thoughts can give information about
the current intellectual and physical state of the human. With the signals from
the brain through the EEG biosensors, we can measure the motivation level of
our brain. Depending on our state of thought or motivation, changing signs can
be used to control a system. This study consists of four stages. Robotic-hand
design was made in the first stage. Plastic parts in robotic-hand design are
drawn by CAD (Solid) program and produced by 3D printer. In the second stage,
the servomotor and the necessary mechanisms are placed into the plastic model
and the joints are moved by the motors that pull the lines of the line for the
correct movement of the fingers. The third stage is the software phase that
will control the movement of the servo-motors in the bionic hand. Software codes
have been created for the Arduino card to control the system. In the fourth and
final stage, the study was carried out by practicing on how the individual
would be motivated by the use of the bionic hand sensor with the brain waves
sensor.

References

  • [1] S. Sanei, and J.A. Chambers, “EEG signal provessing.", John Wiley. Sons Ltd. 2007.
  • [2] T. Beyrouthy, S. Al Kork, J. Akl Korbane and M. Abouelela., ‘‘EEG Mind Controlled Smart Prosthetic Arm’’ Advances in Science, Technology and Engineering Systems Journal vol. 2, No. 3, pp. 891-899, 2017.
  • [3] H. A. Shedeed, M.F. Issa, S.M. El-sayed, “Brain EEG Signal Processing For Controlling a Robotic Arm ” All content following this page was uploaded by Mohamed F. Issa on 17 May. 2015.
  • [4] R. Roy, M. Mahadevappa , C.S. Kumar, “Trajectory path planning of EEG controlled robotic arm using GA”, Procedia Computer Science vol. 84, pp.147-151, 2016.
  • [5] L. Kauhanen, P. Jylanki, J. Lehtonen, P. Rantanen, H. Alaranta, and M. Sams, "EEG-Based Brain-Computer Interface for Tetraplegics," Hindawi Publishing CorporationComputational Intelligence and Neuroscience, Volume 2007, Article ID 23864, 11pages doi:10.1155/2007/23864.
  • [6] N.E. Crone, D.L. Miglioretti, B. Gordon, et al., “Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band”. Brain, vol. 121, pp. 2301–2315, 1998.
  • [7] G. Pfurtscheller, C. Neuper, D. Flotzinger, et al., “EEG-based discrimination between imagination of right and left hand movement”. Electroencephalogr Clin Neurophysiol, vol. 103, pp. 642–651, 1997.
  • [8] https://www.cognifit.com/tr/brain, 31/05/2017.
  • [9] http://www.yenibiyoloji.com/beyin-yapisi-ozellikleri-beynin-bolumleri-ve-kisimlari-1605/, 03/06/2018.
  • [10] http://www.biyolojidefteri.com/index.php/glia-hucreleri, 04/06/2018.
  • [11] https://kindyroo.net/ebeveyn-akademisi/2016/11/18/beyin-gelisimi-gebelikten-3-yasa-kadar/, 01/06/2018.
  • [12] Brain Wave Signal (EEG) of NeuroSky, Inc. 2009.
  • [13] http://www.kuark.org/2012/09/elektromanyetik-dalgalar-ve-zihin-kontrolu/, 01/06/2017.
  • [14] Vidal,J, J, “Direct braincomputer communication”, Ann. Rev. Biophys. Bioengng, vol. 2, pp. 157-158, 1973.
  • [15] Vidal, J, J, ‘Real-time detection of brain events in EEG’, IEEE Proc., vol. 65, pp. 633– 664, 1977.
  • [16] J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. Nicolelis, ,“Real-time control of a robot arm using simultaneous recorded neurons in the motor cortex”, Nature Neurosci., vol. 2, pp. 664-670 1999.
  • [17] M. A. Lebedev, and M. A. L. Nicolelis, ‘‘ Brain-machine interfaces: past, present and future’’, Trends in Neurosci., vol. 29, p. 9, 2006.
  • [18] https://rewiringtinnitus.com/science-brainwave-entrainment/
  • [19] P. He, G. Wilson, and C. Russell, ‘Removal of ocular artifacts from electroencephalogram by adaptive filtering’, Medical and Biological Engineering and Computing, vol. 42, pp 407 412, 2004.
  • [20] P. Shooshtari, G. Mohamadi, B. M. Ardekani, and M. B. Shamsollahi, “Removing Ocular Artifacts from EEG Signals using Adaptive Filtering and ARMAX Modeling”, Proceedıngs Of World Academy Of Scıence, Engıneerıng And Technology, vol.11, pp 277-280, 2006.
There are 20 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ahmet Karakoc This is me 0000-0002-2684-3212

Demet Dogan This is me 0000-0003-0764-7440

T. Cetin Akinci 0000-0002-4657-6617

Publication Date December 1, 2017
Published in Issue Year 2017 Volume: 2 Issue: 2

Cite

APA Karakoc, A., Dogan, D., & Akinci, T. C. (2017). ROBOTIC ARM CONTROL USING THE BRAIN WAVES. The Journal of Cognitive Systems, 2(2), 51-54.