Research Article
BibTex RIS Cite

Oxidation of the Graphite and Carbon Black Obtained from Worn Out Waste Tires Using Improved Hummers Method

Year 2019, Volume: 31 Issue: 3, 238 - 244, 01.09.2019
https://doi.org/10.7240/jeps.523217

Abstract

Due to the high cost of graphite in the chemical synthesis of graphene
oxide, studies on low-cost alternative carbon sources such as coal or carbon
black have intensified. In this study; oxidation of graphite and carbon black
obtained by pyrolysis from worn out waste tires, was oxidized using the
Improved Hummers method. The product properties - structural defect, carbon
content, specific heat capacity of graphene oxide (GO) and oxidized carbon
black (CBO) was determined and compared each other. When the Raman patterns are
analysed, it was determined that carbon black obtained by pyrolysis from worn
out waste tires has a more defective structure (ID / IG = 5.65) than nano-sized
and high-purity carbon black (ID / IG = 2.66) and graphene oxide (ID / IG =
1.40). However, X-Ray Diffraction analyses showed that oxidized carbon black
had higher regular graphene layer content than graphene oxide. While the atomic
carbon content of oxidized carbon black was found as 83.10%, the atomic carbon
content of graphene oxide was determined as 73.10%. These results show that
carbon black has higher carbon content even if oxidized. One of the remarkable
results in the study is the specific heat values of oxidized carbon based
materials. All specific heat capacity values ​​of graphene oxide measured
between -40 ° C and 50 ° C were found to be higher than the oxidized carbon
black. In the improved Hummers method, it was concluded that the use of certain
amounts of carbon black instead of graphite is necessary for the product
properties not to be too far away from graphene oxide. In addition, it was
concluded that oxidized carbon black should be compared with graphene oxide in
terms of potential industrial applications such as water treatment and
electronic applications.

References

  • [1] García-Gen, S., Sousbie, P., Rangaraj, G., Lema, J. M., Rodríguez, J., Steyer, J.-P., and Torrijos, M. (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes, Waste Management 35, 96-104.[2] Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., Vilches, R., Masterson, D., Stretz, J., and Oelz, B. (2015) ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities, Waste Management 35, 329-342.[3] MURATHAN, A., ASAN, A., and ABDULKAREM, T. A. (2013) ÇEVRESEL ATIKLARIN YAPI MALZEMESİNDE DEĞERLENDİRİLMESİ, Journal of the Faculty of Engineering & Architecture of Gazi University 28.[4] Thomas, B. S., Gupta, R. C., and Panicker, V. J. (2016) Recycling of waste tire rubber as aggregate in concrete: durability-related performance, Journal of Cleaner Production 112, 504-513.[5] Azevedo, F., Pacheco-Torgal, F., Jesus, C., Barroso de Aguiar, J. L., and Camões, A. F. (2012) Properties and durability of HPC with tyre rubber wastes, Construction and Building Materials 34, 186-191.[6] Eiras, J. N., Segovia, F., Borrachero, M. V., Monzó, J., Bonilla, M., and Payá, J. (2014) Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires, Materials & Design 59, 550-557.[7] Wang, W.-C., Bai, C.-J., Lin, C.-T., and Prakash, S. (2016) Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine, Applied Thermal Engineering 93, 330-338.[8] Thomas, B. S., Gupta, R. C., Mehra, P., and Kumar, S. (2015) Performance of high strength rubberized concrete in aggressive environment, Construction and Building Materials 83, 320-326.[9] Shu, X., and Huang, B. (2014) Recycling of waste tire rubber in asphalt and portland cement concrete: An overview, Construction and Building Materials 67, 217-224.[10] Abbaspour, M., Aflaki, E., and Moghadas Nejad, F. (2019) Reuse of waste tire textile fibers as soil reinforcement, Journal of Cleaner Production 207, 1059-1071.[11] Wang, M., Zhang, L., Li, A., Irfan, M., Du, Y., and Di, W. (2019) Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars, Journal of Environmental Management 232, 364-371.[12] Dai, M., Xu, H., Yu, Z., Fang, S., Chen, L., Gu, W., and Ma, X. (2018) Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride, Applied Thermal Engineering 136, 9-15.[13] Moulin, L., Da Silva, S., Bounaceur, A., Herblot, M., and Soudais, Y. (2017) Assessment of Recovered Carbon Black Obtained by Waste Tires Steam Water Thermolysis: An Industrial Application, Waste and Biomass Valorization 8, 2757-2770.[14] Saleh, T. A., and Gupta, V. K. (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review, Advances in colloid and interface science 211, 93-101.[15] Trubetskaya, A., Kling, J., Ershag, O., Attard, T. M., and Schröder, E. (2019) Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black, Journal of Hazardous Materials 365, 846-856.[16] Sánchez‐Olmos, L., Medina‐Valtierra, J., Sathish‐Kumar, K., and Sánchez Cardenas, M. (2017) Sulfonated char from waste tire rubber used as strong acid catalyst for biodiesel production, Environmental Progress & Sustainable Energy 36, 619-626.[17] Feng, Z.-g., Rao, W.-y., Chen, C., Tian, B., Li, X.-j., Li, P.-l., and Guo, Q.-l. (2016) Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres, Construction and Building Materials 111, 495-501.[18] Du, X., Zhang, Y., Pan, X., Meng, F., You, J., and Wang, Z. (2019) Preparation and properties of modified porous starch/carbon black/natural rubber composites, Composites Part B: Engineering 156, 1-7.[19] Wang, R., Li, W., Liu, L., Qian, Y., Liu, F., Chen, M., Guo, Y., and Liu, L. (2019) Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances, Journal of Electroanalytical Chemistry 833, 63-69.[20] dos Santos Pereira, T., Mauruto de Oliveira, G. C., Santos, F. A., Raymundo-Pereira, P. A., Oliveira, O. N., and Janegitz, B. C. (2019) Use of zein microspheres to anchor carbon black and hemoglobin in electrochemical biosensors to detect hydrogen peroxide in cosmetic products, food and biological fluids, Talanta 194, 737-744.[21] Yuan, J. J., Hong, R. Y., Wang, Y. Q., and Feng, W. G. (2014) Low-temperature plasma preparation and application of carbon black nanoparticles, Chemical Engineering Journal 253, 107-120.[22] Zhu, L., Lu, Y., Wang, Y., Zhang, L., and Wang, W. (2012) Preparation and characterization of dopamine-decorated hydrophilic carbon black, Applied Surface Science 258, 5387-5393.[23] Razdyakonova, G. I., Kokhanovskaya, O. A., and Likholobov, V. A. (2015) Influence of Environmental Conditions on Carbon Black Oxidation by Reactive Oxygen Intermediates, Procedia Engineering 113, 43-50.[24] Amornwachirabodee, K., Tantimekin, N., Pan-In, P., Palaga, T., Pienpinijtham, P., Pipattanaboon, C., Sukmanee, T., Ritprajak, P., Charoenpat, P., and Pitaksajjakul, P. (2018) Oxidized Carbon Black: Preparation, Characterization and Application in Antibody Delivery across Cell Membrane, Scientific reports 8, 2489.[25] Alfè, M., Gargiulo, V., Di Capua, R., Chiarella, F., Rouzaud, J.-N., Vergara, A., and Ciajolo, A. (2012) Wet Chemical Method for Making Graphene-like Films from Carbon Black, ACS Applied Materials & Interfaces 4, 4491-4498.[26] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004) Electric field in atomically thin carbon films, Science 306, 666-669.[27] Brycht, M., Leniart, A., Zavašnik, J., Nosal–Wiercińska, A., Wasiński, K., Półrolniczak, P., Skrzypek, S., and Kalcher, K. (2018) Synthesis and characterization of the thermally reduced graphene oxide in argon atmosphere, and its application to construct graphene paste electrode as a naptalam electrochemical sensor, Analytica Chimica Acta.[28] Abdolhosseinzadeh, S., Asgharzadeh, H., and Seop Kim, H. (2015) Fast and fully-scalable synthesis of reduced graphene oxide, Scientific Reports 5, 10160.[29] Chen, J., Yao, B., Li, C., and Shi, G. (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64, 225-229.[30] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M. (2010) Improved Synthesis of Graphene Oxide, ACS Nano 4, 4806-4814.[31] Korucu, H., Şimşek, B., and Yartaşı, A. (2018) A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering 43, 6033-6055.[32] Hoang, V. C., Hassan, M., and Gomes, V. G. (2018) Coal derived carbon nanomaterials – Recent advances in synthesis and applications, Applied Materials Today 12, 342-358.[33] Fernández-García, L., Álvarez, P., Pérez-Mas, A. M., Blanco, C., Santamaría, R., Menéndez, R., and Granda, M. (2017) Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids, Fuel 203, 253-260.[34] Sierra, U., Álvarez, P., Blanco, C., Granda, M., Santamaría, R., and Menéndez, R. (2016) Cokes of different origin as precursors of graphene oxide, Fuel 166, 400-403.[35] Korucu, H., Şimşek, B., and Yartaşı, A. (2018) A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering.[36] Şimşek, B., Ultav, G., Korucu, H., and Yartaşı, A. (2018) Improvement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application, Periodica Polytechnica Chemical Engineering 62, 323-335.[37] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K. (2006) Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters 97, 187401.[38] Skákalová, V., Kotrusz, P., Jergel, M., Susi, T., Mittelberger, A., Vretenár, V., Šiffalovič, P., Kotakoski, J., Meyer, J. C., and Hulman, M. (2018) Chemical Oxidation of Graphite: Evolution of the Structure and Properties, The Journal of Physical Chemistry C 122, 929-935.[39] Guerrero-Contreras, J., and Caballero-Briones, F. (2015) Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Mater Chem Phys 153, 209-220.[40] Susanne, P., David, T. B., and Philippe, R. (2007) Determination of the specific heat capacity of a graphite sample using absolute and differential methods, Metrologia 44, 294.

Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu

Year 2019, Volume: 31 Issue: 3, 238 - 244, 01.09.2019
https://doi.org/10.7240/jeps.523217

Abstract

Grafen
oksidin kimyasal sentezinde grafitin yüksek maliyeti nedeni ile kömür veya
karbon siyahı gibi düşük maliyetli alternatif karbon kaynakları üzerindeki
çalışmalar yoğunlaşmıştır. Bu çalışmada, İyileştirilmiş Hummers yöntemi ile
grafit ve ömrünü tamamlamış atık lastikten piroliz ile karbon siyahının
oksidasyonu gerçekleştirilmiştir. Grafen oksit (GO) ve okside karbon siyahının
(CBO) ürün özellikleri- yapısal kusurluluğu, karbon içeriği, özgül ısı
kapasitesi- belirlenmiş ve kıyaslanmıştır. Raman desenleri ile yapılan analiz
ile ömrünü tamamlamış atık lastikten piroliz ile elde edilen karbon siyahının,
nano boyutta ve yüksek saflıkta karbon siyahına (ID/IG=2,66) ve grafen okside
(ID/IG=1,40) karşın daha kusurlu bir yapıya sahip olduğu belirlenmiştir (ID/IG=5,65).
Buna karşın X-Ray Saçılım analizleri ile okside karbon siyahının grafen
tabakalarında düzeninin grafen okside göre daha yüksek olduğu gözlemlenmiştir.
Okside karbon siyahının atomik
karbon içeriği 83,1% iken
grafen oksidin
atomik
karbon içeriği 73,0% olarak belirlenmiştir. Bu
sonuçlar okside karbon siyahının daha yüksek karbon içeriğine sahip olduğu
görülmektedir.
Çalışmadaki
dikkat çekici sonuçlardan biri okside edilen karbon tabanlı malzemelerin özgül
ısı değerleridir. Grafen oksidin, -40°C ve 50°C arasında ölçülen tüm özgül ısı
kapasitesi değerleri okside karbon siyahından yüksek olarak bulunmuştur.
İyileştirilmiş Hummers yönteminde grafit yerine karbon siyahının belli
miktarlarda kullanılmasının ürün özelliklerinin grafen oksitten çok uzaklaşmaması
için gerekli olduğu sonucuna varılmıştır. Ayrıca, okside karbon siyahının
grafen oksit ile su arıtma ve elektronik uygulamalar gibi potansiyel
endüstriyel uygulamalar bakımından kıyaslanması gerektiği sonucuna varılmıştır.  

References

  • [1] García-Gen, S., Sousbie, P., Rangaraj, G., Lema, J. M., Rodríguez, J., Steyer, J.-P., and Torrijos, M. (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes, Waste Management 35, 96-104.[2] Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., Vilches, R., Masterson, D., Stretz, J., and Oelz, B. (2015) ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities, Waste Management 35, 329-342.[3] MURATHAN, A., ASAN, A., and ABDULKAREM, T. A. (2013) ÇEVRESEL ATIKLARIN YAPI MALZEMESİNDE DEĞERLENDİRİLMESİ, Journal of the Faculty of Engineering & Architecture of Gazi University 28.[4] Thomas, B. S., Gupta, R. C., and Panicker, V. J. (2016) Recycling of waste tire rubber as aggregate in concrete: durability-related performance, Journal of Cleaner Production 112, 504-513.[5] Azevedo, F., Pacheco-Torgal, F., Jesus, C., Barroso de Aguiar, J. L., and Camões, A. F. (2012) Properties and durability of HPC with tyre rubber wastes, Construction and Building Materials 34, 186-191.[6] Eiras, J. N., Segovia, F., Borrachero, M. V., Monzó, J., Bonilla, M., and Payá, J. (2014) Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires, Materials & Design 59, 550-557.[7] Wang, W.-C., Bai, C.-J., Lin, C.-T., and Prakash, S. (2016) Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine, Applied Thermal Engineering 93, 330-338.[8] Thomas, B. S., Gupta, R. C., Mehra, P., and Kumar, S. (2015) Performance of high strength rubberized concrete in aggressive environment, Construction and Building Materials 83, 320-326.[9] Shu, X., and Huang, B. (2014) Recycling of waste tire rubber in asphalt and portland cement concrete: An overview, Construction and Building Materials 67, 217-224.[10] Abbaspour, M., Aflaki, E., and Moghadas Nejad, F. (2019) Reuse of waste tire textile fibers as soil reinforcement, Journal of Cleaner Production 207, 1059-1071.[11] Wang, M., Zhang, L., Li, A., Irfan, M., Du, Y., and Di, W. (2019) Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars, Journal of Environmental Management 232, 364-371.[12] Dai, M., Xu, H., Yu, Z., Fang, S., Chen, L., Gu, W., and Ma, X. (2018) Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride, Applied Thermal Engineering 136, 9-15.[13] Moulin, L., Da Silva, S., Bounaceur, A., Herblot, M., and Soudais, Y. (2017) Assessment of Recovered Carbon Black Obtained by Waste Tires Steam Water Thermolysis: An Industrial Application, Waste and Biomass Valorization 8, 2757-2770.[14] Saleh, T. A., and Gupta, V. K. (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review, Advances in colloid and interface science 211, 93-101.[15] Trubetskaya, A., Kling, J., Ershag, O., Attard, T. M., and Schröder, E. (2019) Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black, Journal of Hazardous Materials 365, 846-856.[16] Sánchez‐Olmos, L., Medina‐Valtierra, J., Sathish‐Kumar, K., and Sánchez Cardenas, M. (2017) Sulfonated char from waste tire rubber used as strong acid catalyst for biodiesel production, Environmental Progress & Sustainable Energy 36, 619-626.[17] Feng, Z.-g., Rao, W.-y., Chen, C., Tian, B., Li, X.-j., Li, P.-l., and Guo, Q.-l. (2016) Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres, Construction and Building Materials 111, 495-501.[18] Du, X., Zhang, Y., Pan, X., Meng, F., You, J., and Wang, Z. (2019) Preparation and properties of modified porous starch/carbon black/natural rubber composites, Composites Part B: Engineering 156, 1-7.[19] Wang, R., Li, W., Liu, L., Qian, Y., Liu, F., Chen, M., Guo, Y., and Liu, L. (2019) Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances, Journal of Electroanalytical Chemistry 833, 63-69.[20] dos Santos Pereira, T., Mauruto de Oliveira, G. C., Santos, F. A., Raymundo-Pereira, P. A., Oliveira, O. N., and Janegitz, B. C. (2019) Use of zein microspheres to anchor carbon black and hemoglobin in electrochemical biosensors to detect hydrogen peroxide in cosmetic products, food and biological fluids, Talanta 194, 737-744.[21] Yuan, J. J., Hong, R. Y., Wang, Y. Q., and Feng, W. G. (2014) Low-temperature plasma preparation and application of carbon black nanoparticles, Chemical Engineering Journal 253, 107-120.[22] Zhu, L., Lu, Y., Wang, Y., Zhang, L., and Wang, W. (2012) Preparation and characterization of dopamine-decorated hydrophilic carbon black, Applied Surface Science 258, 5387-5393.[23] Razdyakonova, G. I., Kokhanovskaya, O. A., and Likholobov, V. A. (2015) Influence of Environmental Conditions on Carbon Black Oxidation by Reactive Oxygen Intermediates, Procedia Engineering 113, 43-50.[24] Amornwachirabodee, K., Tantimekin, N., Pan-In, P., Palaga, T., Pienpinijtham, P., Pipattanaboon, C., Sukmanee, T., Ritprajak, P., Charoenpat, P., and Pitaksajjakul, P. (2018) Oxidized Carbon Black: Preparation, Characterization and Application in Antibody Delivery across Cell Membrane, Scientific reports 8, 2489.[25] Alfè, M., Gargiulo, V., Di Capua, R., Chiarella, F., Rouzaud, J.-N., Vergara, A., and Ciajolo, A. (2012) Wet Chemical Method for Making Graphene-like Films from Carbon Black, ACS Applied Materials & Interfaces 4, 4491-4498.[26] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004) Electric field in atomically thin carbon films, Science 306, 666-669.[27] Brycht, M., Leniart, A., Zavašnik, J., Nosal–Wiercińska, A., Wasiński, K., Półrolniczak, P., Skrzypek, S., and Kalcher, K. (2018) Synthesis and characterization of the thermally reduced graphene oxide in argon atmosphere, and its application to construct graphene paste electrode as a naptalam electrochemical sensor, Analytica Chimica Acta.[28] Abdolhosseinzadeh, S., Asgharzadeh, H., and Seop Kim, H. (2015) Fast and fully-scalable synthesis of reduced graphene oxide, Scientific Reports 5, 10160.[29] Chen, J., Yao, B., Li, C., and Shi, G. (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64, 225-229.[30] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M. (2010) Improved Synthesis of Graphene Oxide, ACS Nano 4, 4806-4814.[31] Korucu, H., Şimşek, B., and Yartaşı, A. (2018) A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering 43, 6033-6055.[32] Hoang, V. C., Hassan, M., and Gomes, V. G. (2018) Coal derived carbon nanomaterials – Recent advances in synthesis and applications, Applied Materials Today 12, 342-358.[33] Fernández-García, L., Álvarez, P., Pérez-Mas, A. M., Blanco, C., Santamaría, R., Menéndez, R., and Granda, M. (2017) Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids, Fuel 203, 253-260.[34] Sierra, U., Álvarez, P., Blanco, C., Granda, M., Santamaría, R., and Menéndez, R. (2016) Cokes of different origin as precursors of graphene oxide, Fuel 166, 400-403.[35] Korucu, H., Şimşek, B., and Yartaşı, A. (2018) A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering.[36] Şimşek, B., Ultav, G., Korucu, H., and Yartaşı, A. (2018) Improvement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application, Periodica Polytechnica Chemical Engineering 62, 323-335.[37] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K. (2006) Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters 97, 187401.[38] Skákalová, V., Kotrusz, P., Jergel, M., Susi, T., Mittelberger, A., Vretenár, V., Šiffalovič, P., Kotakoski, J., Meyer, J. C., and Hulman, M. (2018) Chemical Oxidation of Graphite: Evolution of the Structure and Properties, The Journal of Physical Chemistry C 122, 929-935.[39] Guerrero-Contreras, J., and Caballero-Briones, F. (2015) Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Mater Chem Phys 153, 209-220.[40] Susanne, P., David, T. B., and Philippe, R. (2007) Determination of the specific heat capacity of a graphite sample using absolute and differential methods, Metrologia 44, 294.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Recep Berk Alp This is me 0000-0003-1883-3281

Ömer Faruk Dilmaç 0000-0002-9660-0638

Barış Şimşek 0000-0002-0655-4368

Publication Date September 1, 2019
Published in Issue Year 2019 Volume: 31 Issue: 3

Cite

APA Alp, R. B., Dilmaç, Ö. F., & Şimşek, B. (2019). Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu. International Journal of Advances in Engineering and Pure Sciences, 31(3), 238-244. https://doi.org/10.7240/jeps.523217
AMA Alp RB, Dilmaç ÖF, Şimşek B. Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu. JEPS. September 2019;31(3):238-244. doi:10.7240/jeps.523217
Chicago Alp, Recep Berk, Ömer Faruk Dilmaç, and Barış Şimşek. “Grafit Ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi Ile Oksidasyonu”. International Journal of Advances in Engineering and Pure Sciences 31, no. 3 (September 2019): 238-44. https://doi.org/10.7240/jeps.523217.
EndNote Alp RB, Dilmaç ÖF, Şimşek B (September 1, 2019) Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu. International Journal of Advances in Engineering and Pure Sciences 31 3 238–244.
IEEE R. B. Alp, Ö. F. Dilmaç, and B. Şimşek, “Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu”, JEPS, vol. 31, no. 3, pp. 238–244, 2019, doi: 10.7240/jeps.523217.
ISNAD Alp, Recep Berk et al. “Grafit Ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi Ile Oksidasyonu”. International Journal of Advances in Engineering and Pure Sciences 31/3 (September 2019), 238-244. https://doi.org/10.7240/jeps.523217.
JAMA Alp RB, Dilmaç ÖF, Şimşek B. Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu. JEPS. 2019;31:238–244.
MLA Alp, Recep Berk et al. “Grafit Ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi Ile Oksidasyonu”. International Journal of Advances in Engineering and Pure Sciences, vol. 31, no. 3, 2019, pp. 238-44, doi:10.7240/jeps.523217.
Vancouver Alp RB, Dilmaç ÖF, Şimşek B. Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu. JEPS. 2019;31(3):238-44.