Research Article
BibTex RIS Cite

Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei

Year 2020, Volume: 32 Issue: 4, 473 - 477, 01.11.2020
https://doi.org/10.7240/jeps.714481

Abstract

Nuclear structures of the atomic nuclei can be theoretically investigated by using nuclear shell model. Generally, a doubly closed-shell nucleus has been considered as inert core and the nucleons outside the core are taken into account in the calculation. It is assumed that the nucleons in the inert core do not move but each valance nucleon out of the core moves under an average potential created by the others. The self-conjugate (N=Z) moderate mass nuclei region is one of the region for the investigation of several phenomena because of the maximum spatial overlap of neutrons and protons. In this study, the nuclear structures of the moderate mass N=Z have been analyzed in the scope of the nuclear shell model by using KSHELL computer code. In the calculations, doubly magic 56Ni were taken as core and p3/2, f5/2 and p1/2 single particle orbits were used as valance orbits. Different two-body interactions have been taken into account. The results have been compared with each other and the available values existing in the literature.

References

  • [1] Bohr, A . and Mottelson, B. R.: Nuclear Structure, 1969, Vol. 1. W.A. Benjamin, New York.
  • [2] Greiner, W . and Maruhn J.: Nuclear Models, 1996, Springer, Berlin.
  • [3] Bayram, T. and Yılmaz, A. H., “Table of Ground State Properties of Nuclei in the RMF Model”, Mod. Phys. Lett. A., Vol. 28, no. 16, pp. 1350068, 2013.
  • [4] Bayram, T., Akkoyun, S. and Şentürk, Ş., “Adjustment of Non-linear Interaction Parameters for Relativistic Mean Field Approach by Using Artificial Neural Networks”, Phys. At. Nucl., Vol. 81, pp. 288-295, 2018.
  • [5] Stoitsov, M. V., Dobaczewski, J., Nazarewicz, W., Pittel, S. and Dean, D. J., “Systematic study of deformed nuclei at the drip lines and beyond”, Phys. Rev. C, Vol. 68, pp. 054312, 2003.
  • [6] Mayer, M. G., “On closed shells in nuclei. II”, Phys. Rev., Vol. 75, pp.19-24, 1949.
  • [7] Haxel, O., Jensen, J. H. D. and Suess, H. E., “On the “Magic Numbers” in Nuclear Structure”, Phys. Rev. Vol. 75, no. 11, p. 1766, 1949.
  • [8] Mayer, M. G., “On Closed Shells in Nuclei”, Phys. Rev., Vol. 74, p. 235, 1948.
  • [9] Mayer, M. G., “Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence”, Phys. Rev. Vol. 78, p. 16, 1950.
  • [10] Talmi, I., “55 Years Of The Shell Model: A Challenge To Nuclear Many-Body Theory”, Int. J. Mod. Phys. E, Vol. 14, pp. 821-844, 2005.
  • [11] Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. and Zuker, A. P., Rev. Mod. Phy. Vol. 77, no. 2, pp. 427-488, 2005.
  • [12] Brown, B. A., “The Nuclear Shell Model toward the Drip Lines”, Prog. Part. Nucl. Phys. Vol. 47, pp. 517-599, 2001.
  • [13] Shimizu, N., “Nuclear shell-model code for massive paralel computation, KSHELL”, arXiv:1310.5431 [nucl-th], 2013.
  • [14] Brown, B. A. and Rae, W. D. M., “The Shell-Model Code NuShellX@MSU”, Nucl. Data Sheets. Vol. 120, pp. 115-118, 2014.
  • [15] REDSTICK, http://www.phys.lsu.edu/faculty/cjohnson/redstick.html.
  • [16] Calvin, W. J., Erich Ormand, W, McElvain, K. S. and Shan, H. “BIGSTICK: A flexible configuration-interaction shell-model code”, arXiv:1801.08432v1 [physics.comp-ph], 2018.
  • [17] ANTOINE, http://www.iphc.cnrs.fr/nutheo/code_antoine/menu.html.
  • [18] Brown, B.A., et al.,” Oxbash for Windows“, MSU_NSCL report number 1289.
  • [19] Van Hees et al., Nucl. Phys. A, Vol. 239, p. 129, 1976.
  • [20] Honma, M, Otsuka, T., Mizusaki, T., and Jensen M. H-., “New effective interaction for f5pg9-shell nuclei”, Phys. Rev. C, Vol. 80, p. 064323, 2009.
  • [21] Kinsey, R.R., et al., The NUDAT/PCNUDAT Program for Nuclear Data, paper submitted to the 9th International Symposium of Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996. Data extracted from the NUDAT database, 2.8 (01.April.2020).
  • [22] Raman, S., N, Nestor, JR C. W. and Tikkanen, P., “Transition probability from the ground to the first-excited 2+ state of even–even nuclides”, At. Data. Nucl. Data Tables, Vol. 78, pp. 1–128, 2001.
  • [23] Takami, S., Yabana, K. and Matsuo, M., “Tetrahedral and triangular deformations of Z=N nuclei in mass region A∼60–80”, Phys. Lett. B, Vol. 431, no. 3-4, pp. 242-248, 1998.

Öz-eşlenik Zn, Ge, Se, Kr, Sr Çekirdeklerinin Nükleer Yapılarının İncelenmesi

Year 2020, Volume: 32 Issue: 4, 473 - 477, 01.11.2020
https://doi.org/10.7240/jeps.714481

Abstract

Atom çekirdeklerinin nükleer yapıları, nükleer kabuk modeli kullanılarak teorik olarak incelenebilir. Genel olarak, bir çift kapalı kabuk çekirdeği kor çekirdek olarak ele alınır ve kor dışındaki nükleonlar hesaplamada dikkate alınır. Kor çekirdekteki nükleonların hareket etmediği, ancak kor dışındaki valans nükleonlarının, diğerleri tarafından yaratılan ortalama bir potansiyel altında hareket ettiği varsayılmaktadır. Öz-eşlenik (N=Z) orta ağırlığa sahip kütleli çekirdeklerin bölgesi, nötronların ve protonların azami uzaysal çakışması nedeniyle, bazı nükleer olguların araştırılması için uygun bölgelerden birisidir. Bu çalışmada, orta ağırlıktaki N=Z çekirdeklerinin nükleer yapı özellikleri, nükleer kabuk modeli kapsamında KSHELL bilgisayar kodu kullanılarak araştırılmıştır. Hesaplamalarda kor çekirdek olarak çift sihirli 56Ni ele alınmış ve valans orbitalleri olarak p3/2, f5/2 ve p1/2 tek parçacık seviyeleri kullanılmıştır. Farklı iki cisim etkileşmeleri ele alınmıştır. Sonuçlar birbirleriyle ve literatürdeki mevcut değerlerle karşılaştırılmıştır.

References

  • [1] Bohr, A . and Mottelson, B. R.: Nuclear Structure, 1969, Vol. 1. W.A. Benjamin, New York.
  • [2] Greiner, W . and Maruhn J.: Nuclear Models, 1996, Springer, Berlin.
  • [3] Bayram, T. and Yılmaz, A. H., “Table of Ground State Properties of Nuclei in the RMF Model”, Mod. Phys. Lett. A., Vol. 28, no. 16, pp. 1350068, 2013.
  • [4] Bayram, T., Akkoyun, S. and Şentürk, Ş., “Adjustment of Non-linear Interaction Parameters for Relativistic Mean Field Approach by Using Artificial Neural Networks”, Phys. At. Nucl., Vol. 81, pp. 288-295, 2018.
  • [5] Stoitsov, M. V., Dobaczewski, J., Nazarewicz, W., Pittel, S. and Dean, D. J., “Systematic study of deformed nuclei at the drip lines and beyond”, Phys. Rev. C, Vol. 68, pp. 054312, 2003.
  • [6] Mayer, M. G., “On closed shells in nuclei. II”, Phys. Rev., Vol. 75, pp.19-24, 1949.
  • [7] Haxel, O., Jensen, J. H. D. and Suess, H. E., “On the “Magic Numbers” in Nuclear Structure”, Phys. Rev. Vol. 75, no. 11, p. 1766, 1949.
  • [8] Mayer, M. G., “On Closed Shells in Nuclei”, Phys. Rev., Vol. 74, p. 235, 1948.
  • [9] Mayer, M. G., “Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence”, Phys. Rev. Vol. 78, p. 16, 1950.
  • [10] Talmi, I., “55 Years Of The Shell Model: A Challenge To Nuclear Many-Body Theory”, Int. J. Mod. Phys. E, Vol. 14, pp. 821-844, 2005.
  • [11] Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. and Zuker, A. P., Rev. Mod. Phy. Vol. 77, no. 2, pp. 427-488, 2005.
  • [12] Brown, B. A., “The Nuclear Shell Model toward the Drip Lines”, Prog. Part. Nucl. Phys. Vol. 47, pp. 517-599, 2001.
  • [13] Shimizu, N., “Nuclear shell-model code for massive paralel computation, KSHELL”, arXiv:1310.5431 [nucl-th], 2013.
  • [14] Brown, B. A. and Rae, W. D. M., “The Shell-Model Code NuShellX@MSU”, Nucl. Data Sheets. Vol. 120, pp. 115-118, 2014.
  • [15] REDSTICK, http://www.phys.lsu.edu/faculty/cjohnson/redstick.html.
  • [16] Calvin, W. J., Erich Ormand, W, McElvain, K. S. and Shan, H. “BIGSTICK: A flexible configuration-interaction shell-model code”, arXiv:1801.08432v1 [physics.comp-ph], 2018.
  • [17] ANTOINE, http://www.iphc.cnrs.fr/nutheo/code_antoine/menu.html.
  • [18] Brown, B.A., et al.,” Oxbash for Windows“, MSU_NSCL report number 1289.
  • [19] Van Hees et al., Nucl. Phys. A, Vol. 239, p. 129, 1976.
  • [20] Honma, M, Otsuka, T., Mizusaki, T., and Jensen M. H-., “New effective interaction for f5pg9-shell nuclei”, Phys. Rev. C, Vol. 80, p. 064323, 2009.
  • [21] Kinsey, R.R., et al., The NUDAT/PCNUDAT Program for Nuclear Data, paper submitted to the 9th International Symposium of Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996. Data extracted from the NUDAT database, 2.8 (01.April.2020).
  • [22] Raman, S., N, Nestor, JR C. W. and Tikkanen, P., “Transition probability from the ground to the first-excited 2+ state of even–even nuclides”, At. Data. Nucl. Data Tables, Vol. 78, pp. 1–128, 2001.
  • [23] Takami, S., Yabana, K. and Matsuo, M., “Tetrahedral and triangular deformations of Z=N nuclei in mass region A∼60–80”, Phys. Lett. B, Vol. 431, no. 3-4, pp. 242-248, 1998.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Serkan Akkoyun 0000-0002-8996-3385

Tuncay Bayram 0000-0003-3704-0818

Publication Date November 1, 2020
Published in Issue Year 2020 Volume: 32 Issue: 4

Cite

APA Akkoyun, S., & Bayram, T. (2020). Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. International Journal of Advances in Engineering and Pure Sciences, 32(4), 473-477. https://doi.org/10.7240/jeps.714481
AMA Akkoyun S, Bayram T. Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. JEPS. November 2020;32(4):473-477. doi:10.7240/jeps.714481
Chicago Akkoyun, Serkan, and Tuncay Bayram. “Investigation of Nuclear Structures of Self-Conjugate Zn, Ge, Se, Kr, Sr Nuclei”. International Journal of Advances in Engineering and Pure Sciences 32, no. 4 (November 2020): 473-77. https://doi.org/10.7240/jeps.714481.
EndNote Akkoyun S, Bayram T (November 1, 2020) Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. International Journal of Advances in Engineering and Pure Sciences 32 4 473–477.
IEEE S. Akkoyun and T. Bayram, “Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei”, JEPS, vol. 32, no. 4, pp. 473–477, 2020, doi: 10.7240/jeps.714481.
ISNAD Akkoyun, Serkan - Bayram, Tuncay. “Investigation of Nuclear Structures of Self-Conjugate Zn, Ge, Se, Kr, Sr Nuclei”. International Journal of Advances in Engineering and Pure Sciences 32/4 (November 2020), 473-477. https://doi.org/10.7240/jeps.714481.
JAMA Akkoyun S, Bayram T. Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. JEPS. 2020;32:473–477.
MLA Akkoyun, Serkan and Tuncay Bayram. “Investigation of Nuclear Structures of Self-Conjugate Zn, Ge, Se, Kr, Sr Nuclei”. International Journal of Advances in Engineering and Pure Sciences, vol. 32, no. 4, 2020, pp. 473-7, doi:10.7240/jeps.714481.
Vancouver Akkoyun S, Bayram T. Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. JEPS. 2020;32(4):473-7.