Review
BibTex RIS Cite

Baklagillerde simbiyotik kök nodül gelişimi

Year 2021, Volume: 33 Issue: 1, 1 - 10, 30.01.2021
https://doi.org/10.7240/jeps.667509

Abstract

Baklagiller hem insan ve hayvan beslenmesi, hem de toprak verimliliğinin arttırılması yönünden önemli bir doğal kaynaktır. Baklagillerin ayırt edici bir özelliği de, çeşitli gram negatif kök nodül bakterileri ile azot- fiksasyonu simbiyotik ortaklığı kurma yetenekleridir. Bakteri ve bitki arasında gerçekleşen bu simbiyotik ilişki, bitkinin kök dokusunda özelleşmiş bir yapı olan nodül dokusu içerisinde gerçekleşmektedir. Nodül oluşumu, bitki kökleri tarafından salgılanan flavonoid sentezi ile başlayarak, bitki ve bakteri arasında gerçekleşen oldukça karmaşık bir dizi sinyal ilişkisini içermektedir. Bu derleme çalışmasında, bitki köklerinde oluşan nodül dokusunun oluşum mekanizması ayrıntılı bir şekilde anlatılmıştır.

References

  • [1] Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M-H, Lin, Y-H, Reid D.E., Gresshoff, P.M. (2010). Molecular Analysis of Legume Nodule Development and Autoregulation, J. Integr. Plant Biol., 52 (1), 61–76.
  • [2] Yüzbaşıoğlu E. (2011). Medicago truncatula Gaertn. cv. Jemalong Bitkisinde Nodül Oluşumu Sirasinda Küçük-Gtp Bağlayan Proteinlerin Rolü. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • [3] Yavaş İ., Ünay A. (2018). Baklagillerde Kök, Nodül Oluşumu ve Azot Fiksasyonu Üzerine Bazı Küresel İklim Değişikliği Parametrelerinin Etkisi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi (UTYHBD), 4(2): 270 – 278.
  • [4] Sarıoğlu, G., Velioğlu Y.S. (2018). Baklagillerin Bileşimi. Akademik Gıda,16(4), 483-496.
  • [5] European Association for Grain Legume Research , 2007, www.grainlegumes.com. Accessed January 2009.
  • [6] Gül, M., Işık, H. (2002). Dünyada ve Türkiye’de Baklagil Üretim ve Dış Ticaretindeki Gelimseler. MKU Ziraat Fakültesi Dergisi, 7(1-2): 59-72.
  • [7] Kızıloğlu, F.T. (1997). Toprak Organizmalarının Azot Formları Arasındaki Dönüşümlere ve Çevreye Etkileri. Çevre Koruma,30:27-30.
  • [8] Müftüoğlu N.M., Demirer T. (1998). Toprakta Azot Bilançosu. Atatürk Üniv. Ziraat Fak.Derg. 29 (1), 175-185.
  • [9] Pueppke, S.G., Broughton, W.J. (1999). Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant-Microbe Interact., 12, 293–318.
  • [10] Caetano-Anoll´es, G., Gresshoff, P.M. (1991). Plant genetic control of nodulation. Annu. Rev. Microbiol., 45, 345–382.
  • [11] Geurts R., Bisseling T. (2002). Rhizobium Nod Factor Perception and Signalling. Plant Cell, 14, 239-249.
  • [12] Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prom´E, J.C., D´enari´e, J. (1990). Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, 344, 781–784.
  • [13] D´enari´e, J., Debelle, F., Prom´e J.C. (1996). Rhizobium lipochitooligosaccharide nodulation factors: Signalling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem, 65, 503–535.
  • [14] Oldroyd, G.E.D., Downie, J.A. (2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol., 59, 519–546.
  • [15] Gage, D.J. (2004). Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes. Microbiol Mol Biol Rev., 68(2), 280–300. [16] Turgeon, B.G., Bauer, W.D. (1985). Ultrastructure of infection thread development during infection of soybean by Rhizobium japonicum. Planta, 163, 328–349.
  • [17] Lohar, D., Stiller, J., Kam, J., Stacey, G., Gresshoff, P.M. (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann. Bot., 104, 277–285.
  • [18] Udvardi, M., Day, D. (1997). Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol., 48, 493–523.
  • [19] Roth, L.E., Stacey, G. (1989). Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains. Eur. J. Cell Biol.,49, 24–32.
  • [20] Newcomb, W., Sippel, D., Peterson, R.L. (1979). The early morphogenesis of Glycine max and Pisum sativum root nodules. Can. J. Bot. 57, 2603–2616.
  • [21] Calvert, H.E., Pence, M.K., Pierce, M., Malik, N.S.A., Bauer, W.D. (1984). Anatomical analysis of the development and distribution of Rhizobium infection in soybean roots. Can. J. Bot. 62, 2375–2384.
  • [22] Rolfe, B.G., Gresshoff, P.M. (1988) Genetic analysis of legume nodule initiation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39, 297–319.
  • [23] Guinel, F. C. (2009). Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types. Botany 87, 1117–1138.
  • [24] Hirsch, A.M. (1992). Developmental biology of legume nodulation. New Phytol. 122, 211-237.
  • [25] Wopereis, J., Pajuelo, E., Dazzo, F.B., Jiang, Q., Gresshoff, P.M., De Bruijn, F.J., Stougaard, J., Szczyglowski, K. (2000). Shoot root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J, 23, 97–114.
  • [26] Fujishige, N.A., Kapadia, N.N., De Hoff Pl, Hirsch, A.M. (2006). Investigations of Rhizobium biofilm formation. FEMS Microbiol. Ecol., 56,195–206.
  • [27] Sanchez-Contreras, M., Bauer, W.D., Gao, M., Robinson, J.B., Downie, J.A. (2007). Quorumsensing regulation in rhizobia and its role in symbiotic interactions with legumes, Philos. Trans. R. Soc. London Ser. B 362:1149–63.
  • [28] Smit, G., Kijne, J.W., Lugtenberg, B.J.J. (1987). Involvement of both cellulose fibrils and a Ca+2_-dependent adhesin in the attchment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol., 169, 4294–4301.
  • [29] Smit, G., Kijne, J.W., Lugtenberg, B.J.J. (1986). Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol., 168, 821–827. [30] Diaz, C.L., Spaink, H.P., Wijffelman, C.A., Kijne, J.W. (1995). Genomic requirements of Rhizobium for nodulation of white clover hairy roots transformed with the pea lectin gene. Mol. Plant-Microbe Interact. 8,348–56.
  • [31] Brewin, N.J. (2004). Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis. Critical Reviews in Plant Sciences, 23(4), 293–316.
  • [32] Sieberer, B., Emons, A. M. C. (2000). Cytoarchitecture and pattern of cytoplasmic streaming in root hairs of Medicago truncatula during development and deformation by nodulation factors. Protoplasma 214,118–127.
  • [33] Timmers, A. C., Auriac, M.C., de Billy, F., Truchet, G. (1998). Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development, 125, 339–349.
  • [34] Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S., Ayabe, S. (2003). A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5- deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol., 131, 941–951.
  • [35] Geurts, R., Fedorova, E., Bisseling, T., 2005, Nod factor signaling genes and their function in the early stages of Rhizobium infection. Current Opinion in Plant Biology, 8:346–352.
  • [36] Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T., Geurts, R. (2003). LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302, 630–633.
  • [37] Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J. (2003). A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature 425, 637–640.
  • [38] Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Grønlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N., Stougaard, J. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.
  • [39] Arrighi, J.F., Barre, A., Ben Amor, B., Bersoult, A., Soriano, L.C., Mirabella, R., De Carvalho-Niebel, F., Journet, E.P., Gh´Erardi, M., Huguet, T., Geurts, R., D´Enari´E, J., Roug´E, P., Gough, C. (2006). The Medicago truncatula Lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142, 265.
  • [40] Indrasumunar, A., Kereszt, A., Searle, I., Miyagi, M., Li, D., Nguyen, C.D.T., Men, A., Carroll, B.J., Gresshof, P.M. (2009). Inactivation of duplicated Nod-Factor Receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol.,51(2), 201-214.
  • [41] Steen, A., Buist, G., Leenhouts, K.J., El Khattabi, M., Grijpstra, F., Zomer, A.L., Venema, G., Kuipers, O.P., Kok, J. (2003). Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem. 278, 23874–23881.
  • [42] Gough, C. (2003). Rhizobium symbiosis: Insight into nod factor receptors. Curr. Biol. 13, 973-975.
  • [43] Huse, M., Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell., 109, 275–282.
  • [44] Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kalo, P., Kiss, G.B. (2002). A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962–966.
  • [45] Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., Szczyglowski, K., Parniske, M. (2002). A plant receptor-like kinase required for both fungal and bacterial symbiosis, Nature 417, 959–962.
  • [46] Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E., Long, S.R. (2004). A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. USA 101, 4701–4705.
  • [47] An´e, J.M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E., Ayax, C., L´Evy, J., Debell´, F., Baek, J.M., Kalo, P., Rosenberg, C., Roe, B.A., Long, S.R., D´Enari´E, J., Cook, D.R. (2004). Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364–1367.
  • [48] Imaizumi-Anraku, H., Takeda, N., Kawaguchi, M., Parniske, M., Hayashi, M., Kawasaki, S. (2005). Host genes involved in activation and perception of calcium spiking. Plant Cell Physiol. 46, S5-S5.
  • [49] Riely, B.K., Lougnon, G., Ane, J.M., Cook, D.R. (2007). The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J. 49, 208–216.
  • [50] Kanamori, N., Madsen, L.H., Radutoiu, S., Frantescu, M., Quistgaard, E.M., Miwa, H., Downie, J.A., James, E.K., Felle, H.H., Haaning, L.L., Jensen, T.H., Sato, S., Nakamura, Y., Tabata, S., Sandal, N., Stougaard, J. (2006). A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl. Acad. Sci. 103, 359–364.
  • [51] Saito, K., Yoshikawa, M., Yano, K., Miwa, H., Uchida, H., Asamizu, E., Sato, S., Tabata, S., Imaizumi-Anraku, H., Umehara, Y., Kouchi, H., Murooka, Y., Szczyglowski, K., Downie, J.A., Parniske, M., Hayashi, M., Kawaguchi, M. (2007). NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell,19, 610–624.
  • [52] L´evy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., An´e, J.M., Lauber, E., Bisseling, T., D´Enari´E, J., Rosenberg, C., Debell´e, F. (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364.
  • [53] Felle, H.H., Kondorosi, E., Kondorosi, A., Schultze, M. (1999). Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the nod factor signal in alfalfa. Plant Physiol. 121, 273 279.
  • [54] Wais, R.J., Galera, C., Oldroyd, G., Catoira, R., Penmetsa, R.V., Cook, D., Gough, C., Denari´E, J., Long, S.R. (2000). Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc. Natl. Acad. Sci. 97, 13407–13412.
  • [55] Oldroyd, G.E.D., Downie, J.A. (2004). Calcium, kinases and nodulation signalling in legumes. Nat. Rev. Mol. Cell Biol. 5, 566–576.
  • [56] Li, W.H., Llopis, J., Whitney, M., Zlokarnik, G., Tsien, R.Y. (1998). Cell permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941.
  • [57] Allen, G.J., Chu, S.P., Harrington, C.L., Schumacher, K., Hoffmann, T., Tang, Y.Y., Grill, E., Schroeder, J.I. (2001). A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411, 1053–1057.
  • [58] Smit, P., Raedts, J., Portyanko, V., Debell´E, F., Gough, C., Bisseling, T., Geurts, R. (2005). NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 308, 1789–1791.
  • [59] Oldroyd, G.E.D., Long, S.R. (2003). Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod factor signaling. Plant Physiol., 131, 1027–1032.
  • [60] Andriankaja, A., Boisson-Dernier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D.G., De Carvalho-Niebel, F. (2007). AP2-ERF transcription factors mediate nod factor-dependent MtENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell 19, 2866–2885.
  • [61] Hirsch, S., Kim, J., Munoz, A., Heckmann, A.B., Downie, J.A., Oldroyd, G.E.D. (2009). GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 21, 545–557.
  • [62] Messinese, E., Mun, J.H., Yeun, L.H., Jayaraman, D., Roug´E, P., Barre, A., Lougnon, G., Schornack, S., Bono, J.J., Cook, D.R., An´e, J.M. (2007). A novel nuclear protein interacts with the symbiotic DMI3 calcium and calmodulin-dependent protein kinase of Medicago truncatula. Mol. Plant-Microbe Interact. 20, 912–921.
  • [63] Yano, K., Yoshida, S., Muller, J., Singh, S., Banba, M., Vickers, K., Markmann, K., White, C., Schuller, B., Sato, S., Asamizu, E., Tabata, S., Murooka, Y., Perry, J., Wang, T.L., Kawaguchi, M., Imaizumi- Anraku, H., Hayashi, M.,, Parniske, M. (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation, Proc. Natl. Acad. Sci., 105, 20540–20545.
  • [64] Van Spronsen, P.C., Bakhuizen, R., Van Brussel, A.A.N., Kijne, J.W. (1994). Cell-wall degradation during infection thread formation by the root- nodule bacterium Rhizobium leguminosarum is a 2-step process. Eur. J. Cell Biol., 64, 88–94. [65] Timmers, A.C.J., Auriac, M.C., And Truchet, G. (1999). Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development, 126, 3617–3628.
  • [66] Yüzbaşıoğlu, E., Dalyan, E., Memon, A., Öz, G., Yüksel, B., 2017. Functional specialization of Arf paralogs in nodules of model legume, Medicago truncatula. Plant Growth Regul. 81, 501–510.
  • [67] Tate, R., Patriarca, E.J., Riccio, A., Defez, R., Iaccarino, M., (1994). Development of Phaseolus vulgaris root nodules. Mol. Plant Microbe Interact. 7, 582–589.
  • [68] Jones, K.M., Kobayashi, H., Davies, B.W., Taga, W.E. Walker, G.C. (2007). How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nature Microbiology, 5, 619-633.
  • [69] Walker, S. A. and Downie, J. A. 2000. Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol. Plant Microbe Interact. 13: 754–762.
  • [69] Gage, D.J. (2002). Analysis of infection thread development using GFP- and DsRed-expressing Sinorhizobium meliloti. J. Bacteriol., 184, 7042–7046.
  • [70] Cheng, H. P. and Walker, G. C. 1998. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180: 5183–5191.
  • [71] Wang, L. X., Wang, Y., Pellock, B., and Walker, G. C. 1999. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J. Bacteriology 181: 6788–6796.
  • [72] Yang, W.C., De Blank, C., Franssen, H., Bisseling, T. (1994). Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cell cycle is only completed in primordium formation. Plant Cell , 6,1415–1426.
  • [73] Robertson, J.G., Lyttleton, P. (1984). Division of peribacteroid membranes in root nodules of white clover. J. Cell Sci. 69, 147–157.
  • [74] Stacey, G. (2007). The Rhizobium-Legume Nitrogen-Fixing Symbiosis, Biology of the Nitrogen Cycle, Chapter 10, Elsevier B.V.
Year 2021, Volume: 33 Issue: 1, 1 - 10, 30.01.2021
https://doi.org/10.7240/jeps.667509

Abstract

References

  • [1] Ferguson, B.J., Indrasumunar, A., Hayashi, S., Lin, M-H, Lin, Y-H, Reid D.E., Gresshoff, P.M. (2010). Molecular Analysis of Legume Nodule Development and Autoregulation, J. Integr. Plant Biol., 52 (1), 61–76.
  • [2] Yüzbaşıoğlu E. (2011). Medicago truncatula Gaertn. cv. Jemalong Bitkisinde Nodül Oluşumu Sirasinda Küçük-Gtp Bağlayan Proteinlerin Rolü. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi.
  • [3] Yavaş İ., Ünay A. (2018). Baklagillerde Kök, Nodül Oluşumu ve Azot Fiksasyonu Üzerine Bazı Küresel İklim Değişikliği Parametrelerinin Etkisi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi (UTYHBD), 4(2): 270 – 278.
  • [4] Sarıoğlu, G., Velioğlu Y.S. (2018). Baklagillerin Bileşimi. Akademik Gıda,16(4), 483-496.
  • [5] European Association for Grain Legume Research , 2007, www.grainlegumes.com. Accessed January 2009.
  • [6] Gül, M., Işık, H. (2002). Dünyada ve Türkiye’de Baklagil Üretim ve Dış Ticaretindeki Gelimseler. MKU Ziraat Fakültesi Dergisi, 7(1-2): 59-72.
  • [7] Kızıloğlu, F.T. (1997). Toprak Organizmalarının Azot Formları Arasındaki Dönüşümlere ve Çevreye Etkileri. Çevre Koruma,30:27-30.
  • [8] Müftüoğlu N.M., Demirer T. (1998). Toprakta Azot Bilançosu. Atatürk Üniv. Ziraat Fak.Derg. 29 (1), 175-185.
  • [9] Pueppke, S.G., Broughton, W.J. (1999). Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol. Plant-Microbe Interact., 12, 293–318.
  • [10] Caetano-Anoll´es, G., Gresshoff, P.M. (1991). Plant genetic control of nodulation. Annu. Rev. Microbiol., 45, 345–382.
  • [11] Geurts R., Bisseling T. (2002). Rhizobium Nod Factor Perception and Signalling. Plant Cell, 14, 239-249.
  • [12] Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prom´E, J.C., D´enari´e, J. (1990). Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature, 344, 781–784.
  • [13] D´enari´e, J., Debelle, F., Prom´e J.C. (1996). Rhizobium lipochitooligosaccharide nodulation factors: Signalling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem, 65, 503–535.
  • [14] Oldroyd, G.E.D., Downie, J.A. (2008). Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol., 59, 519–546.
  • [15] Gage, D.J. (2004). Infection and Invasion of Roots by Symbiotic, Nitrogen-Fixing Rhizobia during Nodulation of Temperate Legumes. Microbiol Mol Biol Rev., 68(2), 280–300. [16] Turgeon, B.G., Bauer, W.D. (1985). Ultrastructure of infection thread development during infection of soybean by Rhizobium japonicum. Planta, 163, 328–349.
  • [17] Lohar, D., Stiller, J., Kam, J., Stacey, G., Gresshoff, P.M. (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann. Bot., 104, 277–285.
  • [18] Udvardi, M., Day, D. (1997). Metabolite transport across symbiotic membranes of legume nodules. Annu. Rev. Plant Physiol., 48, 493–523.
  • [19] Roth, L.E., Stacey, G. (1989). Cytoplasmic membrane systems involved in bacterium release into soybean nodule cells as studied with two Bradyrhizobium japonicum mutant strains. Eur. J. Cell Biol.,49, 24–32.
  • [20] Newcomb, W., Sippel, D., Peterson, R.L. (1979). The early morphogenesis of Glycine max and Pisum sativum root nodules. Can. J. Bot. 57, 2603–2616.
  • [21] Calvert, H.E., Pence, M.K., Pierce, M., Malik, N.S.A., Bauer, W.D. (1984). Anatomical analysis of the development and distribution of Rhizobium infection in soybean roots. Can. J. Bot. 62, 2375–2384.
  • [22] Rolfe, B.G., Gresshoff, P.M. (1988) Genetic analysis of legume nodule initiation. Annu. Rev. Plant Physiol. Plant Mol. Biol., 39, 297–319.
  • [23] Guinel, F. C. (2009). Getting around the legume nodule: I. The structure of the peripheral zone in four nodule types. Botany 87, 1117–1138.
  • [24] Hirsch, A.M. (1992). Developmental biology of legume nodulation. New Phytol. 122, 211-237.
  • [25] Wopereis, J., Pajuelo, E., Dazzo, F.B., Jiang, Q., Gresshoff, P.M., De Bruijn, F.J., Stougaard, J., Szczyglowski, K. (2000). Shoot root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J, 23, 97–114.
  • [26] Fujishige, N.A., Kapadia, N.N., De Hoff Pl, Hirsch, A.M. (2006). Investigations of Rhizobium biofilm formation. FEMS Microbiol. Ecol., 56,195–206.
  • [27] Sanchez-Contreras, M., Bauer, W.D., Gao, M., Robinson, J.B., Downie, J.A. (2007). Quorumsensing regulation in rhizobia and its role in symbiotic interactions with legumes, Philos. Trans. R. Soc. London Ser. B 362:1149–63.
  • [28] Smit, G., Kijne, J.W., Lugtenberg, B.J.J. (1987). Involvement of both cellulose fibrils and a Ca+2_-dependent adhesin in the attchment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol., 169, 4294–4301.
  • [29] Smit, G., Kijne, J.W., Lugtenberg, B.J.J. (1986). Correlation between extracellular fibrils and attachment of Rhizobium leguminosarum to pea root hair tips. J. Bacteriol., 168, 821–827. [30] Diaz, C.L., Spaink, H.P., Wijffelman, C.A., Kijne, J.W. (1995). Genomic requirements of Rhizobium for nodulation of white clover hairy roots transformed with the pea lectin gene. Mol. Plant-Microbe Interact. 8,348–56.
  • [31] Brewin, N.J. (2004). Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis. Critical Reviews in Plant Sciences, 23(4), 293–316.
  • [32] Sieberer, B., Emons, A. M. C. (2000). Cytoarchitecture and pattern of cytoplasmic streaming in root hairs of Medicago truncatula during development and deformation by nodulation factors. Protoplasma 214,118–127.
  • [33] Timmers, A. C., Auriac, M.C., de Billy, F., Truchet, G. (1998). Nod factor internalization and microtubular cytoskeleton changes occur concomitantly during nodule differentiation in alfalfa. Development, 125, 339–349.
  • [34] Shimada, N., Aoki, T., Sato, S., Nakamura, Y., Tabata, S., Ayabe, S. (2003). A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5- deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol., 131, 941–951.
  • [35] Geurts, R., Fedorova, E., Bisseling, T., 2005, Nod factor signaling genes and their function in the early stages of Rhizobium infection. Current Opinion in Plant Biology, 8:346–352.
  • [36] Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T., Geurts, R. (2003). LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302, 630–633.
  • [37] Madsen, E.B., Madsen, L.H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J. (2003). A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals. Nature 425, 637–640.
  • [38] Radutoiu, S., Madsen, L.H., Madsen, E.B., Felle, H.H., Umehara, Y., Grønlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N., Stougaard, J. (2003). Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425, 585–592.
  • [39] Arrighi, J.F., Barre, A., Ben Amor, B., Bersoult, A., Soriano, L.C., Mirabella, R., De Carvalho-Niebel, F., Journet, E.P., Gh´Erardi, M., Huguet, T., Geurts, R., D´Enari´E, J., Roug´E, P., Gough, C. (2006). The Medicago truncatula Lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol. 142, 265.
  • [40] Indrasumunar, A., Kereszt, A., Searle, I., Miyagi, M., Li, D., Nguyen, C.D.T., Men, A., Carroll, B.J., Gresshof, P.M. (2009). Inactivation of duplicated Nod-Factor Receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol.,51(2), 201-214.
  • [41] Steen, A., Buist, G., Leenhouts, K.J., El Khattabi, M., Grijpstra, F., Zomer, A.L., Venema, G., Kuipers, O.P., Kok, J. (2003). Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents. J. Biol. Chem. 278, 23874–23881.
  • [42] Gough, C. (2003). Rhizobium symbiosis: Insight into nod factor receptors. Curr. Biol. 13, 973-975.
  • [43] Huse, M., Kuriyan, J. (2002). The conformational plasticity of protein kinases. Cell., 109, 275–282.
  • [44] Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kalo, P., Kiss, G.B. (2002). A receptor kinase gene regulating symbiotic nodule development. Nature 417, 962–966.
  • [45] Stracke, S., Kistner, C., Yoshida, S., Mulder, L., Sato, S., Kaneko, T., Tabata, S., Sandal, N., Stougaard, J., Szczyglowski, K., Parniske, M. (2002). A plant receptor-like kinase required for both fungal and bacterial symbiosis, Nature 417, 959–962.
  • [46] Mitra, R.M., Gleason, C.A., Edwards, A., Hadfield, J., Downie, J.A., Oldroyd, G.E., Long, S.R. (2004). A Ca2+/calmodulin-dependent protein kinase required for symbiotic nodule development: Gene identification by transcript-based cloning. Proc. Natl. Acad. Sci. USA 101, 4701–4705.
  • [47] An´e, J.M., Kiss, G.B., Riely, B.K., Penmetsa, R.V., Oldroyd, G.E., Ayax, C., L´Evy, J., Debell´, F., Baek, J.M., Kalo, P., Rosenberg, C., Roe, B.A., Long, S.R., D´Enari´E, J., Cook, D.R. (2004). Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303, 1364–1367.
  • [48] Imaizumi-Anraku, H., Takeda, N., Kawaguchi, M., Parniske, M., Hayashi, M., Kawasaki, S. (2005). Host genes involved in activation and perception of calcium spiking. Plant Cell Physiol. 46, S5-S5.
  • [49] Riely, B.K., Lougnon, G., Ane, J.M., Cook, D.R. (2007). The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J. 49, 208–216.
  • [50] Kanamori, N., Madsen, L.H., Radutoiu, S., Frantescu, M., Quistgaard, E.M., Miwa, H., Downie, J.A., James, E.K., Felle, H.H., Haaning, L.L., Jensen, T.H., Sato, S., Nakamura, Y., Tabata, S., Sandal, N., Stougaard, J. (2006). A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc. Natl. Acad. Sci. 103, 359–364.
  • [51] Saito, K., Yoshikawa, M., Yano, K., Miwa, H., Uchida, H., Asamizu, E., Sato, S., Tabata, S., Imaizumi-Anraku, H., Umehara, Y., Kouchi, H., Murooka, Y., Szczyglowski, K., Downie, J.A., Parniske, M., Hayashi, M., Kawaguchi, M. (2007). NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell,19, 610–624.
  • [52] L´evy, J., Bres, C., Geurts, R., Chalhoub, B., Kulikova, O., Duc, G., Journet, E.P., An´e, J.M., Lauber, E., Bisseling, T., D´Enari´E, J., Rosenberg, C., Debell´e, F. (2004). A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303, 1361–1364.
  • [53] Felle, H.H., Kondorosi, E., Kondorosi, A., Schultze, M. (1999). Elevation of the cytosolic free [Ca2+] is indispensable for the transduction of the nod factor signal in alfalfa. Plant Physiol. 121, 273 279.
  • [54] Wais, R.J., Galera, C., Oldroyd, G., Catoira, R., Penmetsa, R.V., Cook, D., Gough, C., Denari´E, J., Long, S.R. (2000). Genetic analysis of calcium spiking responses in nodulation mutants of Medicago truncatula. Proc. Natl. Acad. Sci. 97, 13407–13412.
  • [55] Oldroyd, G.E.D., Downie, J.A. (2004). Calcium, kinases and nodulation signalling in legumes. Nat. Rev. Mol. Cell Biol. 5, 566–576.
  • [56] Li, W.H., Llopis, J., Whitney, M., Zlokarnik, G., Tsien, R.Y. (1998). Cell permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression. Nature 392, 936–941.
  • [57] Allen, G.J., Chu, S.P., Harrington, C.L., Schumacher, K., Hoffmann, T., Tang, Y.Y., Grill, E., Schroeder, J.I. (2001). A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411, 1053–1057.
  • [58] Smit, P., Raedts, J., Portyanko, V., Debell´E, F., Gough, C., Bisseling, T., Geurts, R. (2005). NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science, 308, 1789–1791.
  • [59] Oldroyd, G.E.D., Long, S.R. (2003). Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod factor signaling. Plant Physiol., 131, 1027–1032.
  • [60] Andriankaja, A., Boisson-Dernier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D.G., De Carvalho-Niebel, F. (2007). AP2-ERF transcription factors mediate nod factor-dependent MtENOD11 activation in root hairs via a novel cis-regulatory motif. Plant Cell 19, 2866–2885.
  • [61] Hirsch, S., Kim, J., Munoz, A., Heckmann, A.B., Downie, J.A., Oldroyd, G.E.D. (2009). GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell, 21, 545–557.
  • [62] Messinese, E., Mun, J.H., Yeun, L.H., Jayaraman, D., Roug´E, P., Barre, A., Lougnon, G., Schornack, S., Bono, J.J., Cook, D.R., An´e, J.M. (2007). A novel nuclear protein interacts with the symbiotic DMI3 calcium and calmodulin-dependent protein kinase of Medicago truncatula. Mol. Plant-Microbe Interact. 20, 912–921.
  • [63] Yano, K., Yoshida, S., Muller, J., Singh, S., Banba, M., Vickers, K., Markmann, K., White, C., Schuller, B., Sato, S., Asamizu, E., Tabata, S., Murooka, Y., Perry, J., Wang, T.L., Kawaguchi, M., Imaizumi- Anraku, H., Hayashi, M.,, Parniske, M. (2008). CYCLOPS, a mediator of symbiotic intracellular accommodation, Proc. Natl. Acad. Sci., 105, 20540–20545.
  • [64] Van Spronsen, P.C., Bakhuizen, R., Van Brussel, A.A.N., Kijne, J.W. (1994). Cell-wall degradation during infection thread formation by the root- nodule bacterium Rhizobium leguminosarum is a 2-step process. Eur. J. Cell Biol., 64, 88–94. [65] Timmers, A.C.J., Auriac, M.C., And Truchet, G. (1999). Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements. Development, 126, 3617–3628.
  • [66] Yüzbaşıoğlu, E., Dalyan, E., Memon, A., Öz, G., Yüksel, B., 2017. Functional specialization of Arf paralogs in nodules of model legume, Medicago truncatula. Plant Growth Regul. 81, 501–510.
  • [67] Tate, R., Patriarca, E.J., Riccio, A., Defez, R., Iaccarino, M., (1994). Development of Phaseolus vulgaris root nodules. Mol. Plant Microbe Interact. 7, 582–589.
  • [68] Jones, K.M., Kobayashi, H., Davies, B.W., Taga, W.E. Walker, G.C. (2007). How rhizobial symbionts invade plants: the Sinorhizobium–Medicago model. Nature Microbiology, 5, 619-633.
  • [69] Walker, S. A. and Downie, J. A. 2000. Entry of Rhizobium leguminosarum bv. viciae into root hairs requires minimal nod factor specificity, but subsequent infection thread growth requires nodO or nodE. Mol. Plant Microbe Interact. 13: 754–762.
  • [69] Gage, D.J. (2002). Analysis of infection thread development using GFP- and DsRed-expressing Sinorhizobium meliloti. J. Bacteriol., 184, 7042–7046.
  • [70] Cheng, H. P. and Walker, G. C. 1998. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J. Bacteriol. 180: 5183–5191.
  • [71] Wang, L. X., Wang, Y., Pellock, B., and Walker, G. C. 1999. Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J. Bacteriology 181: 6788–6796.
  • [72] Yang, W.C., De Blank, C., Franssen, H., Bisseling, T. (1994). Rhizobium nod factors reactivate the cell cycle during infection and nodule primordium formation, but the cell cycle is only completed in primordium formation. Plant Cell , 6,1415–1426.
  • [73] Robertson, J.G., Lyttleton, P. (1984). Division of peribacteroid membranes in root nodules of white clover. J. Cell Sci. 69, 147–157.
  • [74] Stacey, G. (2007). The Rhizobium-Legume Nitrogen-Fixing Symbiosis, Biology of the Nitrogen Cycle, Chapter 10, Elsevier B.V.
There are 72 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Elif Yüzbaşıoğlu 0000-0003-3691-6283

Publication Date January 30, 2021
Published in Issue Year 2021 Volume: 33 Issue: 1

Cite

APA Yüzbaşıoğlu, E. (2021). Baklagillerde simbiyotik kök nodül gelişimi. International Journal of Advances in Engineering and Pure Sciences, 33(1), 1-10. https://doi.org/10.7240/jeps.667509
AMA Yüzbaşıoğlu E. Baklagillerde simbiyotik kök nodül gelişimi. JEPS. January 2021;33(1):1-10. doi:10.7240/jeps.667509
Chicago Yüzbaşıoğlu, Elif. “Baklagillerde Simbiyotik kök nodül gelişimi”. International Journal of Advances in Engineering and Pure Sciences 33, no. 1 (January 2021): 1-10. https://doi.org/10.7240/jeps.667509.
EndNote Yüzbaşıoğlu E (January 1, 2021) Baklagillerde simbiyotik kök nodül gelişimi. International Journal of Advances in Engineering and Pure Sciences 33 1 1–10.
IEEE E. Yüzbaşıoğlu, “Baklagillerde simbiyotik kök nodül gelişimi”, JEPS, vol. 33, no. 1, pp. 1–10, 2021, doi: 10.7240/jeps.667509.
ISNAD Yüzbaşıoğlu, Elif. “Baklagillerde Simbiyotik kök nodül gelişimi”. International Journal of Advances in Engineering and Pure Sciences 33/1 (January 2021), 1-10. https://doi.org/10.7240/jeps.667509.
JAMA Yüzbaşıoğlu E. Baklagillerde simbiyotik kök nodül gelişimi. JEPS. 2021;33:1–10.
MLA Yüzbaşıoğlu, Elif. “Baklagillerde Simbiyotik kök nodül gelişimi”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 1, 2021, pp. 1-10, doi:10.7240/jeps.667509.
Vancouver Yüzbaşıoğlu E. Baklagillerde simbiyotik kök nodül gelişimi. JEPS. 2021;33(1):1-10.