Research Article
BibTex RIS Cite

INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS

Year 2021, Volume: 33 Issue: 1, 64 - 72, 30.01.2021
https://doi.org/10.7240/jeps.717399

Abstract

The structural parameters, electronic structure, and charge density distribution of SbSeI compound under hydrostatic pressure of 0-200 kBar were investigated for the first time. Quantum Espresso software (QE) was used for all calculations. The electronic band structure calculations show that the forbidden band gap of the SbSeI compound has an indirect band in the 0-40 kBar pressure range and a direct band in the 80-200 kBar pressure range. The SbSeI compound is thought to undergo a possible structural phase transition at a pressure in the range of 40-80 kBar.

Supporting Institution

Scientific Research Projects Unit of Osmaniye Korkut Ata University

Project Number

OKÜBAP-2018-PT2-001

Thanks

This work was supported by OKÜBAP (Scientific Research Projects Unit of Osmaniye Korkut Ata University) with the project number OKÜBAP-2018-PT2-001. We many thank Prof. Dr. Süleyman Çabuk from Çukurova University Faculty of Arts and Sciences for his suggestions and useful criticism.

References

  • [ 1] B. Peng, K. Xu, H. Zhang, Z. Ning, H. Shao, G. Ni, J. Li, Y. Zhu, H. Zhu and C. M. Soukoulis, 1D SbSeI, SbSI, and SbSBr With High Stability and Novel Properties for Microelectronic, Optoelectronic, and Thermoelectric Applications, Adv. Theory Simul. 2018, 1, 1700005, DOI: 10.1002/adts.201700005
  • [ 2] F. Demartin, C. M. Gramaccioli, I. Campostrini, Am. Mineral. 2015, 94, 1045.
  • [ 3] F. Demartin, C. M. Gramaccioli, I. Campostrini, Mineral. Mag. 2016, 74, 141.
  • [ 4] A. Starczewska, M. Nowak, P. Szperlich, B. Toron, K. Mistewicz, D. Stróz, J. Szala, Influence of humidity on impedance of SbSI gel, Sensors and Actuators A, 2012, 183, 34–42. DOI: 10.1016/j.sna.2012.06.009
  • [ 5] J. Grigas, A. Kajokas, A. Audzijonis, L. Zigas, Peculiarities and properties of SbSI electroceramics, Journal of the European Ceramic Society, 2001, 21, 337–1340.
  • [ 6] I. Cho, B. K.Min, S.W. Joo, Y. Sohn, One-dimensional single crystalline antimony sulfur iodide, SbSI, Materials Letters, 2012, 86, 132–135. DOI: 10.1016/j.matlet.2012.07.050
  • [ 7] A. Audzijonis, R. Zaltauskas, L. Zigas, I.V. Vinokurova, O.V. Farberovich, A. Pauliukas, A. Kvedaravicius, Variation of the energy gap of the SbSI crystals at ferroelectric phase transition, Physica B, 2006, 371, 68–73. DOI: 10.1016/j.physb.2005.09.039
  • [ 8] H. K. Dubey, L. P. Deshmukh, D. E. Kshirsagar, M. Sharon, M. Sharon, Synthesis and Study of Electrical Properties of SbTeI, Hindawi Publishing Corporation Advances in Physical Chemistry, 2014, Article ID 965350, 6 pages. DOI:10.1155/2014/965350
  • [ 9] A. Audzijonis, L. Zigas, J. Siroic, A. Pauliukas, R. Zaltauskas, A. Cerskus, and J. Narusis, Investigation of the electronic structure of the SbSeI cluster, Phys. Stat. Solidi B, 2006, 243, 610-617. DOI: 10.1002/pssb.200541376
  • [10] R. Audzijonis, R. Sereika, V. Lapeika, R. Zaltauskas, Current mechanism in SbSeI crystals based on phonon-assisted tunnelling emission, Phys. Stat. Solidi B, 2007, 244, 3260-3264. DOI: 10.1002/pssb.200642438
  • [11] W. Khan, S. Hussain, J. Minar, S. Azam, Electronic and thermoelectric properties of ternary chalcohalide semiconductors: First principles study, Journal of electronic materials, 2017. DOI:10.1007/s11664-017-5884-z
  • [12] R. Nitsche and W. J. Merz, Photoconduction in ternary V-VI-VII compounds, Journal of Physics and Chemistry of Solids, 1960, 13, 154–155. DOI: 10.1016/0022-3697(60)90136-0
  • [13] K. Nejezchleb and J. Horak, preparation and photoelectric properties of antimony selenium iodide, Czech. J. Phys. B, 1968, 18, 138 -142.
  • [14] T. Ozer, S. Cabuk, First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals, Journal of Molecular Modeling (2018) 24:66. DOI:10.1007/s00894-018-3608-9
  • [15] T. Ozer, S. Cabuk, Ab initio study of the lattice dynamical and thermodynamic properties of SbXI (X= S, Se, Te) compounds, Computational Condensed Matter 16 (2018) e00320. DOI:10.1016/j.cocom.2018.e00320
  • [16] M. Nowak, M. Kępińska, T. Tański, W. Matysiak, P. Szperlich, D.Stróżc, Optical properties of nanocomposite fibrous polymer mats containing SbSeI nanowires, Optical Materials, 2018, 84, 383-388. DOI: 10.1016/j.optmat.2018.07.012
  • [17] K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery, Nano Energy, 2019, 64, 103906. DOI:10.1016/j.nanoen.2019.103906
  • [18] A. audzijonis, C. Klingshirn, L. Žigas, M. Goppert, A. Pauliukas, R. Žaltauskas, A. Čerškus, A. Kvedaravičius, Investigation of the vibrational spectrum of SbSeI crystals in harmonic and in the anharmonic approximations. Phys B: Condens Matter, 2007, 393, 110–118. DOI: 10.1016/j.physb.2006.12.053
  • [19] A.C. Wibowo, C.D. Mallakas, Z. Liu, J.A. Peters, M. Sebastian, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg Chem, 2013, 52, 7045–7050. DOI: 10.1021/ic401086r
  • [20] T.A. Pikka and V.M. Fridkin, Fiz. Tverd. Tela. 10, 3378 (1968).
  • [21] V. Val. Sobolev, E. V. Pesterev, V. V. Sobolev, V. V., Absorption Spectra of SbSeI and BiSeI Crystals, Inorganic Materials, 2004, 40, 16–19.
  • [22] T. Ozer, Investigation of Structural, Dynamic and Thermodynamic Properties of SbXI (X = S, Se, Te) Compounds with Ab Initio Method, PhD thesis, Çukurova University Institute of Natural and Applied Sciences Department of Physics, 148 Pages, Adana, 2016 (Turkish).
  • [23] M. Bilge, S.Ö. Kart, H.H. Kart, T. Çağın, B3-B1 phase transition and pressure dependence of elastic properties of ZnS, Materials Chemistry and Physics, 2008, 111, 559-564. DOI: 10.1016/j.matchemphys.2008.05.012
  • [24] Available from: http://www.quantum-espresso.org
  • [25] Shiozaki, Y., Nakamura, E., Mitsu, T.(eds), “Ferroelektrics and related substances”, Londalt-Börnstein. Numerical data and functional relationships in science and technology, 36, II data: 14 SbSI family, 2002.
  • [26] Available from: http://www.xcrysden.org/
  • [27] R. W. G. Wyckoff, Crystal Structures, 1980, 1 (Interscience, New York, 1980), p. 385.
  • [28] H. Akkus, A. Kazempour, H. Akbarzadeh, A.M. Mamedov, Bant structure and optical properties of SbSeI:density-functional calculation, Phys. Stat. Sol. (b), 2007, 244, 3673–3683.
  • [29] J.H. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys Rev B, 1976, 13, 5188–5192
  • [30] W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Computational Materials Science 2010, 49, 299-312. DOI:10.1016/j.commatsci.2010.05.010
  • [31] G. P. Voutsas, P. J. Rentzeperis, The crystal structure of antimony selenoiodide, SbSeI, Crystalline Materials, 1982, 161, 111-118. DOI: 10.1524/zkri.1982.161.14.111
  • [32] Available from: https://www.mathworks.com
  • [33] A. Audzijonis, R. Sereika, R. Žaltauskas, Antiferroelectric phase transition in SbSI and SbSeI crystals, Solid State Communications, 2008, 147, 88-89. DOI:10.1016/j.ssc.2008.05.008
  • [34] M. Jesionek, M. Nowak, P. Szperlich, D. Stróż, J. Szala, K. Jesionek, T. Rzychoń, Sonochemical growth of antimony selenoiodide in multiwalled carbon nanotube, Ultrasonics Sonochemistry, 2012, 19, 179-185. DOI: 10.1016/j.ultsonch.2011.06.006
  • [35] M. Nowak, B. Kauch, P. Szperlich, M. Jesionek, M. Kępińska, L. Bober, J. Szala, G. Moskal, T. Rzychoń, D. Stróż, Sonochemical preparation of SbSeI gel, Ultrasonics Sonochemistry, 2009, 16, 546-551. DOI: 10.1016/j.ultsonch.2009.01.003
  • [36] O. Madelung, Semiconductors: data handbook. In:Madelung O (eds) V-I-VI I compounds, 2004, Springer, Berlin, pp 664–673.
  • [37] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J Appl Crystallogr, 2011, 44:1272–1276.
  • [38] WD. Callister, DG. Rethwisch, Materials science and engineering. 8th edn, 2011, Wiley, New York, pp 26–36.
  • [39] I. Lefebvre, M. Lannoo, G. Allan, Electronic properties of antimony chalcogenides, Phys Rev Lett, 1987, 59:2471–2474.

Yüksek Basınç Altında SbSeI'nin Elektronik Özelliklerin İlk İlk Hesaplamalar İle İncelenmesi

Year 2021, Volume: 33 Issue: 1, 64 - 72, 30.01.2021
https://doi.org/10.7240/jeps.717399

Abstract

SbSeI bileşiğinin 0-200 kBar'lık hidrostatik basınç altında yapısal parametreleri, elektronik yapısı ve yük yoğunluğu dağılımı ilk kez araştırıldı. Tüm hesaplamalar için Quantum Espresso yazılımı (QE) kullanıldı. Elektronik bant hesaplamaları, SbSeI bileşiğinin 0-40 kBar basınç aralığında dolaylı ve 80-200 kBar basınç aralığında direkt yasak enerji bant aralığına sahip olduğunu göstermektedir. SbSeI bileşiğinin 40-80 kBar aralığındaki bir basınçta yapısal faz geçişine maruz kaldığı düşünülmektedir.

Project Number

OKÜBAP-2018-PT2-001

References

  • [ 1] B. Peng, K. Xu, H. Zhang, Z. Ning, H. Shao, G. Ni, J. Li, Y. Zhu, H. Zhu and C. M. Soukoulis, 1D SbSeI, SbSI, and SbSBr With High Stability and Novel Properties for Microelectronic, Optoelectronic, and Thermoelectric Applications, Adv. Theory Simul. 2018, 1, 1700005, DOI: 10.1002/adts.201700005
  • [ 2] F. Demartin, C. M. Gramaccioli, I. Campostrini, Am. Mineral. 2015, 94, 1045.
  • [ 3] F. Demartin, C. M. Gramaccioli, I. Campostrini, Mineral. Mag. 2016, 74, 141.
  • [ 4] A. Starczewska, M. Nowak, P. Szperlich, B. Toron, K. Mistewicz, D. Stróz, J. Szala, Influence of humidity on impedance of SbSI gel, Sensors and Actuators A, 2012, 183, 34–42. DOI: 10.1016/j.sna.2012.06.009
  • [ 5] J. Grigas, A. Kajokas, A. Audzijonis, L. Zigas, Peculiarities and properties of SbSI electroceramics, Journal of the European Ceramic Society, 2001, 21, 337–1340.
  • [ 6] I. Cho, B. K.Min, S.W. Joo, Y. Sohn, One-dimensional single crystalline antimony sulfur iodide, SbSI, Materials Letters, 2012, 86, 132–135. DOI: 10.1016/j.matlet.2012.07.050
  • [ 7] A. Audzijonis, R. Zaltauskas, L. Zigas, I.V. Vinokurova, O.V. Farberovich, A. Pauliukas, A. Kvedaravicius, Variation of the energy gap of the SbSI crystals at ferroelectric phase transition, Physica B, 2006, 371, 68–73. DOI: 10.1016/j.physb.2005.09.039
  • [ 8] H. K. Dubey, L. P. Deshmukh, D. E. Kshirsagar, M. Sharon, M. Sharon, Synthesis and Study of Electrical Properties of SbTeI, Hindawi Publishing Corporation Advances in Physical Chemistry, 2014, Article ID 965350, 6 pages. DOI:10.1155/2014/965350
  • [ 9] A. Audzijonis, L. Zigas, J. Siroic, A. Pauliukas, R. Zaltauskas, A. Cerskus, and J. Narusis, Investigation of the electronic structure of the SbSeI cluster, Phys. Stat. Solidi B, 2006, 243, 610-617. DOI: 10.1002/pssb.200541376
  • [10] R. Audzijonis, R. Sereika, V. Lapeika, R. Zaltauskas, Current mechanism in SbSeI crystals based on phonon-assisted tunnelling emission, Phys. Stat. Solidi B, 2007, 244, 3260-3264. DOI: 10.1002/pssb.200642438
  • [11] W. Khan, S. Hussain, J. Minar, S. Azam, Electronic and thermoelectric properties of ternary chalcohalide semiconductors: First principles study, Journal of electronic materials, 2017. DOI:10.1007/s11664-017-5884-z
  • [12] R. Nitsche and W. J. Merz, Photoconduction in ternary V-VI-VII compounds, Journal of Physics and Chemistry of Solids, 1960, 13, 154–155. DOI: 10.1016/0022-3697(60)90136-0
  • [13] K. Nejezchleb and J. Horak, preparation and photoelectric properties of antimony selenium iodide, Czech. J. Phys. B, 1968, 18, 138 -142.
  • [14] T. Ozer, S. Cabuk, First-principles study of the structural, elastic and electronic properties of SbXI (X=S, Se, Te) crystals, Journal of Molecular Modeling (2018) 24:66. DOI:10.1007/s00894-018-3608-9
  • [15] T. Ozer, S. Cabuk, Ab initio study of the lattice dynamical and thermodynamic properties of SbXI (X= S, Se, Te) compounds, Computational Condensed Matter 16 (2018) e00320. DOI:10.1016/j.cocom.2018.e00320
  • [16] M. Nowak, M. Kępińska, T. Tański, W. Matysiak, P. Szperlich, D.Stróżc, Optical properties of nanocomposite fibrous polymer mats containing SbSeI nanowires, Optical Materials, 2018, 84, 383-388. DOI: 10.1016/j.optmat.2018.07.012
  • [17] K. Mistewicz, M. Jesionek, M. Nowak, M. Kozioł, SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery, Nano Energy, 2019, 64, 103906. DOI:10.1016/j.nanoen.2019.103906
  • [18] A. audzijonis, C. Klingshirn, L. Žigas, M. Goppert, A. Pauliukas, R. Žaltauskas, A. Čerškus, A. Kvedaravičius, Investigation of the vibrational spectrum of SbSeI crystals in harmonic and in the anharmonic approximations. Phys B: Condens Matter, 2007, 393, 110–118. DOI: 10.1016/j.physb.2006.12.053
  • [19] A.C. Wibowo, C.D. Mallakas, Z. Liu, J.A. Peters, M. Sebastian, D.Y. Chung, B.W. Wessels, M.G. Kanatzidis, Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg Chem, 2013, 52, 7045–7050. DOI: 10.1021/ic401086r
  • [20] T.A. Pikka and V.M. Fridkin, Fiz. Tverd. Tela. 10, 3378 (1968).
  • [21] V. Val. Sobolev, E. V. Pesterev, V. V. Sobolev, V. V., Absorption Spectra of SbSeI and BiSeI Crystals, Inorganic Materials, 2004, 40, 16–19.
  • [22] T. Ozer, Investigation of Structural, Dynamic and Thermodynamic Properties of SbXI (X = S, Se, Te) Compounds with Ab Initio Method, PhD thesis, Çukurova University Institute of Natural and Applied Sciences Department of Physics, 148 Pages, Adana, 2016 (Turkish).
  • [23] M. Bilge, S.Ö. Kart, H.H. Kart, T. Çağın, B3-B1 phase transition and pressure dependence of elastic properties of ZnS, Materials Chemistry and Physics, 2008, 111, 559-564. DOI: 10.1016/j.matchemphys.2008.05.012
  • [24] Available from: http://www.quantum-espresso.org
  • [25] Shiozaki, Y., Nakamura, E., Mitsu, T.(eds), “Ferroelektrics and related substances”, Londalt-Börnstein. Numerical data and functional relationships in science and technology, 36, II data: 14 SbSI family, 2002.
  • [26] Available from: http://www.xcrysden.org/
  • [27] R. W. G. Wyckoff, Crystal Structures, 1980, 1 (Interscience, New York, 1980), p. 385.
  • [28] H. Akkus, A. Kazempour, H. Akbarzadeh, A.M. Mamedov, Bant structure and optical properties of SbSeI:density-functional calculation, Phys. Stat. Sol. (b), 2007, 244, 3673–3683.
  • [29] J.H. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys Rev B, 1976, 13, 5188–5192
  • [30] W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Computational Materials Science 2010, 49, 299-312. DOI:10.1016/j.commatsci.2010.05.010
  • [31] G. P. Voutsas, P. J. Rentzeperis, The crystal structure of antimony selenoiodide, SbSeI, Crystalline Materials, 1982, 161, 111-118. DOI: 10.1524/zkri.1982.161.14.111
  • [32] Available from: https://www.mathworks.com
  • [33] A. Audzijonis, R. Sereika, R. Žaltauskas, Antiferroelectric phase transition in SbSI and SbSeI crystals, Solid State Communications, 2008, 147, 88-89. DOI:10.1016/j.ssc.2008.05.008
  • [34] M. Jesionek, M. Nowak, P. Szperlich, D. Stróż, J. Szala, K. Jesionek, T. Rzychoń, Sonochemical growth of antimony selenoiodide in multiwalled carbon nanotube, Ultrasonics Sonochemistry, 2012, 19, 179-185. DOI: 10.1016/j.ultsonch.2011.06.006
  • [35] M. Nowak, B. Kauch, P. Szperlich, M. Jesionek, M. Kępińska, L. Bober, J. Szala, G. Moskal, T. Rzychoń, D. Stróż, Sonochemical preparation of SbSeI gel, Ultrasonics Sonochemistry, 2009, 16, 546-551. DOI: 10.1016/j.ultsonch.2009.01.003
  • [36] O. Madelung, Semiconductors: data handbook. In:Madelung O (eds) V-I-VI I compounds, 2004, Springer, Berlin, pp 664–673.
  • [37] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J Appl Crystallogr, 2011, 44:1272–1276.
  • [38] WD. Callister, DG. Rethwisch, Materials science and engineering. 8th edn, 2011, Wiley, New York, pp 26–36.
  • [39] I. Lefebvre, M. Lannoo, G. Allan, Electronic properties of antimony chalcogenides, Phys Rev Lett, 1987, 59:2471–2474.
There are 39 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Tahsin Özer 0000-0003-0344-7118

Project Number OKÜBAP-2018-PT2-001
Publication Date January 30, 2021
Published in Issue Year 2021 Volume: 33 Issue: 1

Cite

APA Özer, T. (2021). INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS. International Journal of Advances in Engineering and Pure Sciences, 33(1), 64-72. https://doi.org/10.7240/jeps.717399
AMA Özer T. INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS. JEPS. January 2021;33(1):64-72. doi:10.7240/jeps.717399
Chicago Özer, Tahsin. “INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS”. International Journal of Advances in Engineering and Pure Sciences 33, no. 1 (January 2021): 64-72. https://doi.org/10.7240/jeps.717399.
EndNote Özer T (January 1, 2021) INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS. International Journal of Advances in Engineering and Pure Sciences 33 1 64–72.
IEEE T. Özer, “INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS”, JEPS, vol. 33, no. 1, pp. 64–72, 2021, doi: 10.7240/jeps.717399.
ISNAD Özer, Tahsin. “INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS”. International Journal of Advances in Engineering and Pure Sciences 33/1 (January 2021), 64-72. https://doi.org/10.7240/jeps.717399.
JAMA Özer T. INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS. JEPS. 2021;33:64–72.
MLA Özer, Tahsin. “INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 1, 2021, pp. 64-72, doi:10.7240/jeps.717399.
Vancouver Özer T. INVESTIGATION OF ELECTRONIC PROPERTIES OF SbSeI UNDER HIGH PRESSURE BY FIRST PRINCIPLES CALCULATIONS. JEPS. 2021;33(1):64-72.