Research Article
BibTex RIS Cite

İnsansız Hava Aracı ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı ve Yapımı

Year 2021, Volume: 33 Issue: 1, 90 - 96, 30.01.2021
https://doi.org/10.7240/jeps.742540

Abstract

Atmosferik parçacıkların yerel, bölgesel ve küresel kaynaklarını belirlenmesini amaçlayan Pozitif Matriks Faktör Analizi, Potansiyel Kaynak Katkı Fonksiyonu, Kimyasal Kütle Dengesi gibi çeşitli nümerik modellerde kullanılan veriler, toplanan aerosol örneklerinden elde edilmektedir. Bu modellerin girdi kaynakları, bir bölgede toplanan parçacıkların analiz sonuçlarından elde edilen verilerdir. Atmosferik parçacıkların toplanması, genel olarak yer seviyesinde kurulan parçacık örnekleme sistemleri yoluyla gerçekleştirilmektedir. Yer seviyesinde örneklenen parçacıklar üzerinde yerel kaynakların katkısı, sınır ötesi uzun erimli yörüngeye sahip parçacıkların kaynaklarını belirleyen model çıktılarının sağlıklı değerlendirilmesini sınırlamaktadır. Bu çalışmada, zemin seviyesinden farklı yüksekliklerde yüksek taşınım verimliliğine sahip bir örnekleme sisteminin tasarlanması amaçlanmıştır.

Supporting Institution

Marmara Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAPKO)

Project Number

FEN-C-DRP-100615-0275

Thanks

Bu çalışma Marmara Üniversitesi Bilimsel Araştırma Projeleri Birimi (BAPKO) tarafından FEN-C-DRP-100615-0275 numaralı proje kapsamında desteklenmiştir.

References

  • [1] Wallace, J.M., and Hobbs, P.V. (2006). Atmospheric Science: An Introductory Survey, Second Edition, Elsevier Inc., San Diego, CA, USA.
  • [2] Kulkarni P., Baron P.A., and Willeke K. (2011). Introduction to Aerosol Characterization. In: Aerosol Measurement: Principles, Techniques, and Applications, P. Kulkarni, P.A. Baron, and K. Willeke (ed.), Third Edition, John Wiley & Sons, Inc. Hoboken, New Jersey, USA, pp.3-13.
  • [3] NASA, (2012). http://www.nasa.gov/topics/earth/features/air_sci_missions_2012.html, (January, 2015).
  • [4] Fehsenfeld, F., Hastie D., Chow J., and Solomon, P. (2004). Particle and gas measurements. In: Particulate Matter Science for Policy Makers: A NARSTO Assessment, P.H. McMurry, M.F. Shepherd, and J.S. Vickery (ed.), Cambridge University Press, Cambridge, UK, pp. 159-189.
  • [5] Hamill, P., Brogniez, C., Thomason, L., Deshler, T., Antuña, J., Baumgardner, D., Bevilacqua, R., Brock, C., David, C., Fussen, D., Hervig, M., Hostettler, C.A., Lee, S.-H., Mergenthaler, J., Osborn, M. T., Raga, G., Reeves, J. M., Rosen, J., and Wilson, J. C. (2006). Instrument Descriptions, L. Thomason and Th. Peter (ed.), SPARC Assessment of Stratospheric Aerosol Properties (ASAP), 77–106, SPARC Report No. 4, World Climate Research Programme-124 (WMO /TD-1295).
  • [6] CCSP, (2009). Atmospheric Aerosol Properties and Climate Impacts, Synthesis and Assessment Product 2.3 Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, M. Chin, R.A. Kahn, and S.E. Schwartz (ed.), Washington: NASA.
  • [7] Wilson J.C. and Jonsson H. (2011). Measurement of Cloud and Aerosol Particles from Aircraft. In: Aerosol Measurement: Principles, Techniques, and Applications, P. Kulkarni, P.A. Baron, and K. Willeke (ed.), Third Edition, John Wiley & Sons, Inc. Hoboken, New Jersey, USA, pp.655-665.
  • [8] Beard, K.V. (1983). Reorientation of hydrometeors in aircraft accelerated flow. J. Clim. Appl. Meteor., 22, 1961-1963.
  • [9] Baumgardner, D. (1984). The effects of airflow distortion on aircraft measurement: A workshop summary. Bull. Amer. Meteor. Soc., 65, 1212-1213.
  • [10] King, W.D. (1984). Air flow and particle trajectories around aircraft fuselages. I: Theory. J. Atmos. Oceanic Technol., 1(1), 5-13.
  • [11] King, W.D. (1986). Air flow and particle trajectories around aircraft fuselages. IV: Orientation of ice crystals. J. Atmos. Oceanic Technol., 3, 433-439.
  • [12] MacPherson, J.I., and Baumgardner, D. (1988). Airflow about King Air Wingtip-Mounted cloud particle measurement probes. J. Atmos. Oceanic Technol., 5, 259-273.
  • [13] Twohy, C.H., and Rogers, D. (1993). Airflow and water-drop trajectories at instrument sampling points around the Beechcraft King Air and Lockheed Electra. J. Atmos. Oceanic Technol., 10, 566-578.
  • [14] Pena, J.A., Norman, J.M., and Thomson, D.W. (1977). Isokinetic sampler for continuous airborne aerosol measurements. J. Air Poll. Control Assoc., 27(4), 337-341.
  • [15] Noone, K.J., Ogren J.A., Heintzenberg, J., Charlson, R.J., and Covert, D.S., (1988). Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol. Sci. Technol., 8(3), 235-244.
  • [16] Huebert, B.J., Lee, G., and Warren, W.L. (1990). Airborne aerosol inlet passing efficiency measurement. J. Geophys. Res., 95(D10), 16369-16381.
  • [17] Jonsson, H.H., Wilson, J.C., Brock, C.A., Knollenberg, R.G., Newton, T., Dye, J.E., Baumgardner, D., Borrmann, S., Ferry, G.V., Pueschel, R., Woods, D.C., and Pitts, M. C. (1995). Performance of a focused cavity aerosol spectrometer for measurements in the stratosphere of particle size in the 0.06–2.0-µm-diameter range. J. Atmos. Oceanic Technol., 12, 115-129.
  • [18] Twohy, C.H. (1998). Model calculations and wind tunnel testing of an isokinetic shroud for high-speed sampling. Aerosol Sci. Technol., 29(4), 261-280.
  • [19] Laucks, M.L., and Twohy, C.H. (1998). Size-dependent collection efficiency of an airborne counter flow virtual impactor. Aerosol Sci. Technol., 28(1), 40-61.
  • [20] Hermann, M., Stratmann, F., Wilck, M., and Wiedensohler, A. (2001). Sampling characteristics of an aircraft-borne aerosol inlet system. J. Atmos. Oceanic Technol., 18, 7-19.
  • [21] Twohy, C.H., Strapp, J.W., and Wendisch, M. (2003). Performance of a counterflow virtual impactor in the NASA icing research tunnel. J. Atmos. Oceanic Technol., 20, 781-790.
  • [22] Huebert, B.J., Howell, S.G., Covert, D., Bertram, T., Clarke, A., Anderson, J.R. , Lafleur, B.G., Seebaugh, W.R., Wilson, J.C., Gesler, D., Blomquist, B. and Fox, J. (2004). PELTI: Measuring the passing efficiency of an airborne low turbulence aerosol inlet. Aerosol Sci. Technol., 38(8), 803-826.
  • [23] Hegg, D.A., Covert, D.S., Jonsson, H., and Covert, P.A. (2005). Determination of the transmission efficiency of an aircraft aerosol inlet. Aerosol Sci. Technol., 39(10), 966-971.
  • [24] Chen, J., Conant, W.C., Rissman, T.A., Flagan, R.C., and Seinfeld, J.H. (2005). Effect of angle of attack on the performance of an airborne counterflow virtual impactor. Aerosol Sci. Technol., 39(6), 485-491.
  • [25] McFarland, A.R., Ortiz, C.A., Moore, M.E., DeOtte, Jr., R.E., and Somasundaram, S. (1989). A shrouded aerosol sampling probe. Environ. Sci. Technol., 23(12), 1487-1492.
Year 2021, Volume: 33 Issue: 1, 90 - 96, 30.01.2021
https://doi.org/10.7240/jeps.742540

Abstract

Project Number

FEN-C-DRP-100615-0275

References

  • [1] Wallace, J.M., and Hobbs, P.V. (2006). Atmospheric Science: An Introductory Survey, Second Edition, Elsevier Inc., San Diego, CA, USA.
  • [2] Kulkarni P., Baron P.A., and Willeke K. (2011). Introduction to Aerosol Characterization. In: Aerosol Measurement: Principles, Techniques, and Applications, P. Kulkarni, P.A. Baron, and K. Willeke (ed.), Third Edition, John Wiley & Sons, Inc. Hoboken, New Jersey, USA, pp.3-13.
  • [3] NASA, (2012). http://www.nasa.gov/topics/earth/features/air_sci_missions_2012.html, (January, 2015).
  • [4] Fehsenfeld, F., Hastie D., Chow J., and Solomon, P. (2004). Particle and gas measurements. In: Particulate Matter Science for Policy Makers: A NARSTO Assessment, P.H. McMurry, M.F. Shepherd, and J.S. Vickery (ed.), Cambridge University Press, Cambridge, UK, pp. 159-189.
  • [5] Hamill, P., Brogniez, C., Thomason, L., Deshler, T., Antuña, J., Baumgardner, D., Bevilacqua, R., Brock, C., David, C., Fussen, D., Hervig, M., Hostettler, C.A., Lee, S.-H., Mergenthaler, J., Osborn, M. T., Raga, G., Reeves, J. M., Rosen, J., and Wilson, J. C. (2006). Instrument Descriptions, L. Thomason and Th. Peter (ed.), SPARC Assessment of Stratospheric Aerosol Properties (ASAP), 77–106, SPARC Report No. 4, World Climate Research Programme-124 (WMO /TD-1295).
  • [6] CCSP, (2009). Atmospheric Aerosol Properties and Climate Impacts, Synthesis and Assessment Product 2.3 Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, M. Chin, R.A. Kahn, and S.E. Schwartz (ed.), Washington: NASA.
  • [7] Wilson J.C. and Jonsson H. (2011). Measurement of Cloud and Aerosol Particles from Aircraft. In: Aerosol Measurement: Principles, Techniques, and Applications, P. Kulkarni, P.A. Baron, and K. Willeke (ed.), Third Edition, John Wiley & Sons, Inc. Hoboken, New Jersey, USA, pp.655-665.
  • [8] Beard, K.V. (1983). Reorientation of hydrometeors in aircraft accelerated flow. J. Clim. Appl. Meteor., 22, 1961-1963.
  • [9] Baumgardner, D. (1984). The effects of airflow distortion on aircraft measurement: A workshop summary. Bull. Amer. Meteor. Soc., 65, 1212-1213.
  • [10] King, W.D. (1984). Air flow and particle trajectories around aircraft fuselages. I: Theory. J. Atmos. Oceanic Technol., 1(1), 5-13.
  • [11] King, W.D. (1986). Air flow and particle trajectories around aircraft fuselages. IV: Orientation of ice crystals. J. Atmos. Oceanic Technol., 3, 433-439.
  • [12] MacPherson, J.I., and Baumgardner, D. (1988). Airflow about King Air Wingtip-Mounted cloud particle measurement probes. J. Atmos. Oceanic Technol., 5, 259-273.
  • [13] Twohy, C.H., and Rogers, D. (1993). Airflow and water-drop trajectories at instrument sampling points around the Beechcraft King Air and Lockheed Electra. J. Atmos. Oceanic Technol., 10, 566-578.
  • [14] Pena, J.A., Norman, J.M., and Thomson, D.W. (1977). Isokinetic sampler for continuous airborne aerosol measurements. J. Air Poll. Control Assoc., 27(4), 337-341.
  • [15] Noone, K.J., Ogren J.A., Heintzenberg, J., Charlson, R.J., and Covert, D.S., (1988). Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol. Sci. Technol., 8(3), 235-244.
  • [16] Huebert, B.J., Lee, G., and Warren, W.L. (1990). Airborne aerosol inlet passing efficiency measurement. J. Geophys. Res., 95(D10), 16369-16381.
  • [17] Jonsson, H.H., Wilson, J.C., Brock, C.A., Knollenberg, R.G., Newton, T., Dye, J.E., Baumgardner, D., Borrmann, S., Ferry, G.V., Pueschel, R., Woods, D.C., and Pitts, M. C. (1995). Performance of a focused cavity aerosol spectrometer for measurements in the stratosphere of particle size in the 0.06–2.0-µm-diameter range. J. Atmos. Oceanic Technol., 12, 115-129.
  • [18] Twohy, C.H. (1998). Model calculations and wind tunnel testing of an isokinetic shroud for high-speed sampling. Aerosol Sci. Technol., 29(4), 261-280.
  • [19] Laucks, M.L., and Twohy, C.H. (1998). Size-dependent collection efficiency of an airborne counter flow virtual impactor. Aerosol Sci. Technol., 28(1), 40-61.
  • [20] Hermann, M., Stratmann, F., Wilck, M., and Wiedensohler, A. (2001). Sampling characteristics of an aircraft-borne aerosol inlet system. J. Atmos. Oceanic Technol., 18, 7-19.
  • [21] Twohy, C.H., Strapp, J.W., and Wendisch, M. (2003). Performance of a counterflow virtual impactor in the NASA icing research tunnel. J. Atmos. Oceanic Technol., 20, 781-790.
  • [22] Huebert, B.J., Howell, S.G., Covert, D., Bertram, T., Clarke, A., Anderson, J.R. , Lafleur, B.G., Seebaugh, W.R., Wilson, J.C., Gesler, D., Blomquist, B. and Fox, J. (2004). PELTI: Measuring the passing efficiency of an airborne low turbulence aerosol inlet. Aerosol Sci. Technol., 38(8), 803-826.
  • [23] Hegg, D.A., Covert, D.S., Jonsson, H., and Covert, P.A. (2005). Determination of the transmission efficiency of an aircraft aerosol inlet. Aerosol Sci. Technol., 39(10), 966-971.
  • [24] Chen, J., Conant, W.C., Rissman, T.A., Flagan, R.C., and Seinfeld, J.H. (2005). Effect of angle of attack on the performance of an airborne counterflow virtual impactor. Aerosol Sci. Technol., 39(6), 485-491.
  • [25] McFarland, A.R., Ortiz, C.A., Moore, M.E., DeOtte, Jr., R.E., and Somasundaram, S. (1989). A shrouded aerosol sampling probe. Environ. Sci. Technol., 23(12), 1487-1492.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Bülent Oktay Akkoyunlu 0000-0003-3878-7825

Ilker Oruc 0000-0003-0359-8696

Emre Alpman 0000-0002-7125-5321

Barış Doğan 0000-0002-5490-9821

Hakkı Baltacı 0000-0002-6705-9264

Project Number FEN-C-DRP-100615-0275
Publication Date January 30, 2021
Published in Issue Year 2021 Volume: 33 Issue: 1

Cite

APA Akkoyunlu, B. O., Oruc, I., Alpman, E., Doğan, B., et al. (2021). İnsansız Hava Aracı ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı ve Yapımı. International Journal of Advances in Engineering and Pure Sciences, 33(1), 90-96. https://doi.org/10.7240/jeps.742540
AMA Akkoyunlu BO, Oruc I, Alpman E, Doğan B, Baltacı H. İnsansız Hava Aracı ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı ve Yapımı. JEPS. January 2021;33(1):90-96. doi:10.7240/jeps.742540
Chicago Akkoyunlu, Bülent Oktay, Ilker Oruc, Emre Alpman, Barış Doğan, and Hakkı Baltacı. “İnsansız Hava Aracı Ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı Ve Yapımı”. International Journal of Advances in Engineering and Pure Sciences 33, no. 1 (January 2021): 90-96. https://doi.org/10.7240/jeps.742540.
EndNote Akkoyunlu BO, Oruc I, Alpman E, Doğan B, Baltacı H (January 1, 2021) İnsansız Hava Aracı ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı ve Yapımı. International Journal of Advances in Engineering and Pure Sciences 33 1 90–96.
IEEE B. O. Akkoyunlu, I. Oruc, E. Alpman, B. Doğan, and H. Baltacı, “İnsansız Hava Aracı ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı ve Yapımı”, JEPS, vol. 33, no. 1, pp. 90–96, 2021, doi: 10.7240/jeps.742540.
ISNAD Akkoyunlu, Bülent Oktay et al. “İnsansız Hava Aracı Ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı Ve Yapımı”. International Journal of Advances in Engineering and Pure Sciences 33/1 (January 2021), 90-96. https://doi.org/10.7240/jeps.742540.
JAMA Akkoyunlu BO, Oruc I, Alpman E, Doğan B, Baltacı H. İnsansız Hava Aracı ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı ve Yapımı. JEPS. 2021;33:90–96.
MLA Akkoyunlu, Bülent Oktay et al. “İnsansız Hava Aracı Ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı Ve Yapımı”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 1, 2021, pp. 90-96, doi:10.7240/jeps.742540.
Vancouver Akkoyunlu BO, Oruc I, Alpman E, Doğan B, Baltacı H. İnsansız Hava Aracı ile Atmosferik Parçacık Örnekleme Sisteminin Dizaynı ve Yapımı. JEPS. 2021;33(1):90-6.