Review
BibTex RIS Cite

Metal Oksit Nanopartiküllerin Genotoksik Etkileri

Year 2021, Volume: 33 Issue: 3, 429 - 443, 01.09.2021
https://doi.org/10.7240/jeps.875709

Abstract

Nanopartiküller (NP) (Nanomateryaller-NM), hızla gelişen nanoteknolojide çığır açan partiküllerdir. Bu partiküllerin en az bir boyutu 1-100 nm aralığındadır. Metal oksit nanopartikülleri, nanomateryallerin temel üyelerinden biri olup, tıp, kozmetik, boya, tekstil ve gıda ürünleri gibi çok çeşitli alanlarda yaygın bir şekilde kullanılmaktadır. Metal oksit NP’lerinin yoğun kullanımı, insanların partiküllere inhalasyon, dermal ve oral yollar dahil çeşitli yollarla maruz kalmasına sebep olmaktadır. Diğer taraftan, nanopartiküllere böylesi yoğun maruziyet, partiküllerin olası toksisitesi konusunda endişelerin artmasına sebep olmuştur. Metal oksit nanopartiküllerin şekil ve ebatlarına ilave olarak diğer fizikokimyasal özellikleri de, NP’lerin toksik etkilerinde de önemli rol oynamaktadır. Metal oksit nanopartiküllerinin toksisitesi konusunda yapılan araştırmalar, bazı partiküllerin genotoksik olduğunu ve dolayısıyla insanlar için de zararlı olabileceğini göstermektedir. Bu nedenle bu çalışmada Al2O3, CeO2, CuO, Fe2O3, SiO2, TiO2 ve ZnO nanopartiküllerinin genotoksik etkileri derlenmiştir. Makalede kromozom anomali analizleri ile Ames (bakteriyel geri mutasyon), mikronukleus ve komet testleri kullanılarak yürütülen bazı araştırmalar dikkate alınmıştır. Derlemenin sonunda, metal oksit nanopartiküllerinin genotoksik mekanizmaları konusunda ileri sürülen görüşler sunulmuştur.

Supporting Institution

Gazi Üniversitesi

Project Number

05/2011-74

Thanks

Bu çalışma, 05/2011-74 numaralı Gazi Üniversitesi, Bilimsel Araştırma Projesi kapsamında kısmen desteklenmiştir.

References

  • [1] Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166-1170.
  • [2] Wang, F., Gao, F., Lan, M., Yuan, H., Huang, Y., & Liu, J. (2009). Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicology In Vitro, 23(5), 808-815.
  • [3] Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823-839.
  • [4] Lanone, S., & Boczkowski, J. (2006). Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Current Molecular Medicine, 6(6), 651-663.
  • [5] Choi, H. S., Kim, Y. J., Song, M., Song, M. K., & Ryu, J. C. (2011). Genotoxicity of nano-silica in mammalian cell lines. Toxicology and Environmental Health Sciences, 3(1), 7-13.
  • [6] Warheit, D. B. (2018). Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? F1000Research, 7.
  • [7] Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6(1), 1769-1780.
  • [8] Jin, Y., Kannan, S., Wu, M., & Zhao, J. X. (2007). Toxicity of luminescent silica nanoparticles to living cells. Chemical Research in Toxicology, 20(8), 1126-1133.
  • [9] Sadiq, R., Khan, Q. M., Mobeen, A., & Hashmat, A. J. (2015). In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug and Chemical Toxicology, 38(2), 152-161.
  • [10] Pierscionek, B. K., Li, Y., Yasseen, A. A., Colhoun, L. M., Schachar, R. A., & Chen, W. (2009). Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology, 21(3), 035102.
  • [11] Figuerola, A., Di Corato, R., Manna, L., & Pellegrino, T. (2010). From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 62(2), 126-143.
  • [12] Singh, S. P., Rahman, M. F., Murty, U. S. N., Mahboob, M., & Grover, P. (2013). Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicology and Applied Pharmacology, 266(1), 56-66.
  • [13] Kwon, J. Y., Lee, S. Y., Koedrith, P., Lee, J. Y., Kim, K. M., Oh, J. M., & Seo, Y. R. (2014). Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 761, 1-9.
  • [14] Cordelli, E., Keller, J., Eleuteri, P., Villani, P., Ma-Hock, L., Schulz, M., & Pacchierotti, F. (2017). No genotoxicity in rat blood cells upon 3-or 6-month inhalation exposure to CeO2 or BaSO4 nanomaterials. Mutagenesis, 32(1), 13-22.
  • [15] Du, X., Gao, S., Hong, L., Zheng, X., Zhou, Q., & Wu, J. (2019). Genotoxicity evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the Ames test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 838, 22-27.
  • [16] Cabellos, J., Gimeno-Benito, I., Catalán, J., Lindberg, H. K., Vales, G., Fernandez-Rosas, E., & Janer, G. (2020). Short-term oral administration of non-porous and mesoporous silica did not induce local or systemic toxicity in mice. Nanotoxicology, 28: 1-18.
  • [17] Di Bucchianico, S., Fabbrizi, M. R., Misra, S. K., Valsami-Jones, E., Berhanu, D., Reip, P., & Migliore, L. (2013). Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis, 28(3), 287-299.
  • [18] Sun, T., Yan, Y., Zhao, Y., Guo, F., & Jiang, C. (2012). Copper oxide nanoparticles induce autophagic cell death in A549 cells. PloS one, 7(8), e43442.
  • [19] Singh, N., Jenkins, G. J., Nelson, B. C., Marquis, B. J., Maffeis, T. G., Brown, A. P., & Doak, S. H. (2012). The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials, 33(1), 163-170.
  • [20] Kung, M. L., Hsieh, S. L., Wu, C. C., Chu, T. H., Lin, Y. C., Yeh, B. W., & Hsieh, S. (2015). Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale, 7(5), 1820-1829.
  • [21] Patel, S., Patel, P., & Bakshi, S. R. (2017). Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology, 69(2), 245-263.
  • [22] Zhou, F., Liao, F., Chen, L., Liu, Y., Wang, W., & Feng, S. (2019). The size-dependent genotoxicity and oxidative stress of silica nanoparticles on endothelial cells. Environmental Science and Pollution Research, 26(2), 1911-1920.
  • [23] Askri, D., Cunin, V., Béal, D., Berthier, S., Chovelon, B., Arnaud, J., & Lehmann, S. G. (2019). Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools. Nanotoxicology, 13(8), 1021-1040.
  • [24] Arslan, K., & Akbaba, G. B. (2020). In vitro genotoxicity assessment and comparison of cerium (IV) oxide micro-and nanoparticles. Toxicology and Industrial Health, 36(2), 76-83.
  • [25] Siivola, K. M., Suhonen, S., Hartikainen, M., Catalán, J., & Norppa, H. (2020). Genotoxicity and cellular uptake of nanosized and fine copper oxide particles in human bronchial epithelial cells in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 856, 503217.
  • [26] Abudayyak, M., Guzel, E., & Özhan, G. (2020). Cupric oxide nanoparticles induce cellular toxicity in liver and intestine cell lines. Advanced Pharmaceutical Bulletin, 10(2), 213.
  • [27] Balasubramanyam, A., Sailaja, N., Mahboob, M., Rahman, M. F., Misra, S., Hussain, S. M., & Grover, P. (2009). Evaluation of genotoxic effects of oral exposure to aluminum oxide nanomaterials in rat bone marrow. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1-2), 41-47.
  • [28] Peters, R. J., Oomen, A. G., van Bemmel, G., van Vliet, L., Undas, A. K., Munniks, S., & van der Lee, M. (2020). Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology, 14(3), 420-432.
  • [29] Rahi, A., Sattarahmady, N., & Heli, H. (2015). Toxicity of nanomaterials-physicochemical effects. SSU Journals, 22(6), 1737-1754.
  • [30] Soto, K., Garza, K. M., & Murr, L. E. (2007). Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 3(3), 351-358.
  • [31] Lu, X., Zhu, T., Chen, C., & Liu, Y. (2014). Right or left: the role of nanoparticles in pulmonary diseases. International Journal of Molecular Sciences, 15(10), 17577-17600.
  • [32] Naseem, S., Gatoo, M. A., Dar, A. M., & Qasim, K. (2014). In vivo toxicity of nanoparticles: Modalities and treatment. European Chemical Bulletin, 3(10), 992-1000.
  • [33] Valdiglesias, V., Kiliç, G., Costa, C., Fernández‐Bertólez, N., Pásaro, E., Teixeira, J. P., & Laffon, B. (2015). Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environmental and Molecular Mutagenesis, 56(2), 125-148.
  • [34] Wang, W., Zeng, C., Feng, Y., Zhou, F., Liao, F., Liu, Y., & Wang, X. (2018). The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the p53-caspase pathway. Environmental Pollution, 233, 218-225.
  • [35] Fahmy, B., & Cormier, S. A. (2009). Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology In Vitro, 23(7), 1365-1371.
  • [36] Wang, Z., Li, N., Zhao, J., White, J. C., Qu, P., & Xing, B. (2012). CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chemical Research in Toxicology, 25(7), 1512-1521.
  • [37] Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88(2), 412-419.
  • [38] Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A., & Shao, L. (2018). Potential adverse effects of nanoparticles on the reproductive system. International Journal of Nanomedicine, 13, 8487-8506.
  • [39] Lee, J., Jeong, J. S., Kim, S. Y., Lee, S. J., Shin, Y. J., Im, W. J., Yu, & W. J. (2020). Safety assessment of cerium oxide nanoparticles: Combined repeated-dose toxicity with reproductive/developmental toxicity screening and biodistribution in rats. Nanotoxicology, 14(5), 696-710.
  • [40] Brohi, R. D., Wang, L., Talpur, H. S., Wu, D., Khan, F. A., Bhattarai, D., & Huo, L. J. (2017). Toxicity of nanoparticles on the reproductive system in animal models: a review. Frontiers in Pharmacology, 8, 606.
  • [41] Warheit, D. B. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicological Sciences, 101(2), 183-185.
  • [42] Brown, S. C., Kamal, M., Nasreen, N., Baumuratov, A., Sharma, P., Antony, V. B., & Moudgil, B. M. (2007). Influence of shape, adhension and simulated lung mechanics on amorphous silica nanoparticle toxicity. Advanced Powder Technology, 18(1), 69-79.
  • [43] Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., & Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40(14), 4374-4381.
  • [44] Misra, S. K., Nuseibeh, S., Dybowska, A., Berhanu, D., Tetley, T. D., & Valsami-Jones, E. (2014). Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology, 8(4), 422-432.
  • [45] Lee, J. H., Ju, J. E., Kim, B. I., Pak, P. J., Choi, E. K., Lee, H. S., & Chung, N. (2014). Rod‐shaped iron oxide nanoparticles are more toxic than sphere‐shaped nanoparticles to murine macrophage cells. Environmental Toxicology and Chemistry, 33(12), 2759-2766.
  • [46] Liu, Y., Xia, Q., Liu, Y., Zhang, S., Cheng, F., Zhong, Z., & Xiao, K. (2014). Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology, 25(42), 425101.
  • [47] Yang, L., Kuang, H., Zhang, W., Aguilar, Z. P., Xiong, Y., Lai, W., & Wei, H. (2015). Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale, 7(2), 625-636.
  • [48] Corradi, S., Gonzalez, L., Thomassen, L. C., Bilaničová, D., Birkedal, R. K., Pojana, G., & Kirsch-Volders, M. (2012). Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 745(1-2), 21-27.
  • [49] Gonzalez, L., De Santis Puzzonia, M., Ricci, R., Aureli, F., Guarguaglini, G., Cubadda, F., & Kirsch-Volders, M. (2015). Amorphous silica nanoparticles alter microtubule dynamics and cell migration. Nanotoxicology, 9(6), 729-736.
  • [50] Ghosh, S., Ghosh, I., Chakrabarti, M., & Mukherjee, A. (2020). Genotoxicity and biocompatibility of superparamagnetic iron oxide nanoparticles: Influence of surface modification on biodistribution, retention, DNA damage and oxidative stress. Food and Chemical Toxicology, 136, 110989.
  • [51] Zeiger E. (2010). Genetic Toxicology Testing. Comprehensive Toxicology. 2nd (Ed CA McQueen), Chapel Hill USA, s.139-158.
  • [52] Ünal, F., Yüzbaşıoğlu, D., Yılmaz, S., Akıncı, N., & Aksoy, H. (2011). Genotoxic effects of chlorophenoxy herbicide diclofop-methyl in mice in vivo and in human lymphocytes in vitro. Drug and Chemical Toxicology, 34(4), 390-395.
  • [53] Yüzbaşıoğlu, D., Yilmaz, E. A., & Fatma, Ünal (2016). Antidepresan ilaçlar ve genotoksisite. TÜBAV Bilim Dergisi, 9(1), 17-28.
  • [54] Dusinska, M., Tulinska, J., El Yamani, N., Kuricova, M., Liskova, A., Rollerova, E., & Smolkova, B. (2017). Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: new strategies for toxicity testing? Food and Chemical Toxicology, 109, 797-811.
  • [55] Elespuru, R., Pfuhler, S., Aardema, M. J., Chen, T., Doak, S. H., Doherty, A., & Tanir, J. Y. (2018). Genotoxicity assessment of nanomaterials: Recommendations on best practices, assays, and methods. Toxicological Sciences, 164(2), 391-416.
  • [56] Avuloglu-Yilmaz, E., Yuzbasioglu, D., & Unal, F. (2020). In vitro genotoxicity assessment of monopotassium glutamate and magnesium diglutamate. Toxicology in Vitro, 65, 104780.
  • [57] Unal, F., Demirtaş Korkmaz, F., Suludere, Z., Erol, O., & Yuzbasioglu, D. (2021). Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide. Gazi University Journal of Science, DOI: 10.35378/gujs.826911.
  • [58]Golbamaki, N., Rasulev, B., Cassano, A., Robinson, R. L. M., Benfenati, E., Leszczynski, J., & Cronin, M. T. (2015). Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale, 7(6), 2154-2198.
  • [59] Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., & Dusinska, M. (2014). Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8(3), 233-278.
  • [60] Huang, R., Zhou, Y., Hu, S., & Zhou, P. K. (2019). Targeting and non-targeting effects of nanomaterials on DNA: challenges and perspectives. Reviews in Environmental Science and Bio/Technology, 18(4), 617-634.
  • [61] Yazdimamaghani, M., Moos, P. J., Dobrovolskaia, M. A., & Ghandehari, H. (2019). Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 106-125.
  • [62] McArt, D. G., McKerr, G., Saetzler, K., Howard, C. V., Downes, C. S., & Wasson, G. R. (2010). Comet sensitivity in assessing DNA damage and repair in different cell cycle stages. Mutagenesis, 25(3), 299-303.
  • [63] Collins, A. R. (2014). Measuring oxidative damage to DNA and its repair with the comet assay. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(2), 794-800.
  • [64] Azqueta, A., Langie, S. A., Boutet-Robinet, E., Duthie, S., Ladeira, C., Møller, P., & Godschalk, R. W. (2019). DNA repair as a human biomonitoring tool: Comet assay approaches. Mutation Research/Reviews in Mutation Research, 781, 71-87.
  • [65] Erikel, E., Yuzbasioglu, D., & Unal, F. (2020). Genotoxic and antigenotoxic potential of amygdalin on isolated human lymphocytes by the comet assay. Journal of Food Biochemistry, 44(10), e13436.
  • [66] Langie, S. A., Azqueta, A., & Collins, A. R. (2015). The comet assay: past, present, and future. Frontiers in Genetics, 13(6):266. doi: 10.3389/fgene.
  • [67] Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2(5), 1084.
  • [68] Fenech, M., Kirsch-Volders, M., Natarajan, A. T., Surralles, J., Crott, J. W., Parry, J., & Thomas, P. (2011). Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26(1), 125-132.
  • [69] Bonassi, S., Znaor, A., Ceppi, M., Lando, C., Chang, W. P., Holland, N., & Fenech, M. (2007). An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis, 28(3), 625-631.
  • [70] Boffetta, P., Van Der Hel, O., Norppa, H., Fabianova, E., Fucic, A., Gundy, S., & Bonassi, S. (2007). Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. American Journal of Epidemiology, 165(1), 36-43.
  • [71] Vodenkova, S., Polivkova, Z., Musak, L., Smerhovsky, Z., Zoubkova, H., Sytarova, S., & Vodicka, P. (2015). Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis, 30(4), 557-563.
  • [72] Adhikari, A. (2019). Micronuclei (MN), an Important Cancer Biomarker. Edelweiss Cancer. 1(1):37-42.
  • [73] Wang, H., Wang, Y., Kota, K. K., Sun, B., Kallakury, B., Mikhail, N. N., & Zheng, Y. L. (2017). Strong associations between chromosomal aberrations in blood lymphocytes and the risk of urothelial and squamous cell carcinoma of the bladder. Scientific Reports, 7(1), 1-10.
  • [74] Vernon, R. E. (2013). Which elements are metalloids? Journal of Chemical Education, 90(12), 1703-1707.
  • [75] Ju-Nam, Y., & Lead, J. R. (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the total Environment, 400(1-3), 396-414.
  • [76] Durnev, A. D., Solomina, A. S., Shreder, E. D., Nemova, E. P., Shreder, O., Daugel'-Dauge, N., & Seredenin, S. (2010). In vivo study of genotoxicity and teratogenicity of silica nanocrystals. International Journal of Biomedical Nanoscience and Nanotechnology, 1(1), 70-86.
  • [77] Napierska, D., Thomassen, L. C., Lison, D., Martens, J. A., & Hoet, P. H. (2010). The nanosilica hazard: another variable entity. Particle and Fibre Toxicology, 7(1), 1-32.
  • [78] Akbaba, G. B., & Türkez, H. (2018). Investigation of the genotoxicity of aluminum oxide, β-tricalcium phosphate, and zinc oxide nanoparticles in vitro. International Journal of Toxicology, 37(3), 216-222.
  • [79] Hashimoto, M., & Imazato, S. (2015). Cytotoxic and genotoxic characterization of aluminum and silicon oxide nanoparticles in macrophages. Dental Materials, 31(5), 556-564.
  • [80] Di Virgilio, A. L., Reigosa, M., Arnal, P. M., & De Mele, M. F. L. (2010). Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. Journal of Hazardous Materials, 177(1-3), 711-718.
  • [81] Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., & Chandrasekaran, N. (2016). Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human Experimental Toxicology, 35(2), 170-183.
  • [82] Kumari, M., Singh, S. P., Chinde, S., Rahman, M. F., Mahboob, M., & Grover, P. (2014). Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. International Journal of Toxicology, 33(2), 86-97.
  • [83] El Yamani, N., Collins, A. R., Rundén-Pran, E., Fjellsbø, L. M., Shaposhnikov, S., Zienolddiny, S., & Dusinska, M. (2017). In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis, 32(1), 117-126.
  • [84] Song, M. F., Li, Y. S., Kasai, H., & Kawai, K. (2012). Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. Journal of Clinical Biochemistry and Nutrition, 50(3):211-216.
  • [85] Schneider, T., Westermann, M., & Glei, M. (2017). In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Archives of Toxicology, 91(11), 3517-3527.
  • [86] Gomaa, I. O., Kader, M. H. A., Eldin, T. A. S., & Heikal, O. A. (2013). Evaluation of in vitro mutagenicity and genotoxicity of magnetite nanoparticles. Drug Discoveries & Therapeutics, 7(3), 116-123.
  • [87] Ahamed, M., A Alhadlaq, H., Alam, J., Khan, M., Ali, D., & Alarafi, S. (2013). Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Current Pharmaceutical Design, 19(37), 6681-6690.
  • [88] Fernández‐Bertólez, N., Costa, C., Brandão, F., Duarte, J. A., Teixeira, J. P., Pásaro, E., & Laffon, B. (2019). Evaluation of cytotoxicity and genotoxicity induced by oleic acid‐coated iron oxide nanoparticles in human astrocytes. Environmental and Molecular Mutagenesis, 60(9), 816-829.
  • [89] Downs, T. R., Crosby, M. E., Hu, T., Kumar, S., Sullivan, A., Sarlo, K., & Pfuhler, S. (2012). Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 745(1-2), 38-50.
  • [90] Lankoff, A., Arabski, M., Wegierek-Ciuk, A., Kruszewski, M., Lisowska, H., Banasik-Nowak, A., & Slomkowski, S. (2012). Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology, 7(3), 235-250.
  • [91] Gea, M., Bonetta, S., Iannarelli, L., Giovannozzi, A. M., Maurino, V., Bonetta, S., & Schilirò, T. (2019). Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food and Chemical Toxicology, 127, 89-100.
  • [92] Uzar, N. K., Abudayyak, M., Akcay, N., Algun, G., & Özhan, G. (2015). Zinc oxide nanoparticles induced cyto-and genotoxicity in kidney epithelial cells. Toxicology Mechanisms and Methods, 25(4), 334-339.
  • [93] Shalini, D., Senthilkumar, S., & Rajaguru, P. (2018). Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes. Toxicology Mechanisms and Methods, 28(2), 87-94.
  • [94] Ghosh, M., Ghosh, I., Godderis, L., Hoet, P., & Mukherjee, A. (2019). Genotoxicity of engineered nanoparticles in higher plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 132-145.
  • [95] Park, C. B., Jung, J. W., Baek, M., Sung, B., Park, J. W., Seol, Y., & Kim, Y. J. (2019). Mixture toxicity of metal oxide nanoparticles and silver ions on Daphnia magna. Journal of Nanoparticle Research, 21(8), 1-13.
  • [96] Hou, J., Wu, Y., Li, X., Wei, B., Li, S., & Wang, X. (2018). Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193, 852-860.
  • [97] Zhu, Y., Wu, J., Chen, M., Liu, X., Xiong, Y., Wang, Y., & Wang, X. (2019). Recent advances in the biotoxicity of metal oxide nanoparticles: impacts on plants, animals and microorganisms. Chemosphere, 237, 124403.
  • [98] Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., & Barsova, N. (2020). ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health, 42(1), 147-158.
  • [99] Surendhiran, D., Cui, H., & Lin, L. (2020). Mode of Transfer, Toxicity and Negative Impacts of Engineered Nanoparticles on Environment, Human and Animal Health. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization, s.165-204.
  • [100] Doak, S. H., Liu, Y., & Chen, C. (2012). Genotoxicity and cancer. Adverse Effects of Engineered Nanomaterials; Elsevier Inc.: Amsterdam, The Netherlands, s. 243-261.
  • [101] Kryston, T. B., Georgiev, A. B., Pissis, P., & Georgakilas, A. G. (2011). Role of oxidative stress and DNA damage in human carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 711(1-2), 193-201.
  • [102] Gong, C., Tao, G., Yang, L., Liu, J., He, H., & Zhuang, Z. (2012). The role of reactive oxygen species in silicon dioxide nanoparticle-induced cytotoxicity and DNA damage in HaCaT cells. Molecular Biology Reports, 39(4), 4915-4925.
  • [103] Könczöl, M., Weiß, A., Gminski, R., Merfort, I., & Mersch-Sundermann, V. (2013). Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells. Toxicology Letters, 216(2-3), 171-180.
  • [104] Laha, D., Pramanik, A., Maity, J., Mukherjee, A., Pramanik, P., Laskar, A., & Karmakar, P. (2014). Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(1), 1-9.
  • [105] Bulcke, F., Thiel, K., & Dringen, R. (2014). Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology, 8(7), 775-785.
  • [106] Canlı, E. G. (2020). Bakır Oksit Nanopartikülü Etkisinde Kalan Memelilerde (Rattus norvegicus var. albinos) Bazı Metabolik Tepkilerin Incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(2), 304-315.
  • [107] Paunovic, J., Vucevic, D., Radosavljevic, T., Mandić-Rajčević, S., & Pantic, I. (2020). Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chemico-biological interactions, 316, 108935.
  • [108] Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., & Doak, S. H. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23-24), 3891-3914.
  • [109] Choi, A. O., Brown, S. E., Szyf, M., & Maysinger, D. (2008). Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. Journal of molecular medicine, 86(3), 291-302.
  • [110] Athinarayanan, J., Periasamy, V. S., Alsaif, M. A., Al-Warthan, A. A., & Alshatwi, A. A. (2014). Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biology and Toxicology, 30(2), 89-100.
  • [111] Marano, F., Hussain, S., Rodrigues-Lima, F., Baeza-Squiban, A., & Boland, S. (2011). Nanoparticles: molecular targets and cell signalling. Archives of Toxicology, 85(7), 733-741.
  • [112] Guichard, Y., Schmit, J., Darne, C., Gaté, L., Goutet, M., Rousset, D., & Binet, S. (2012). Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Annals of Occupational Hygiene, 56(5), 631-644.
  • [113] AshaRani, P. V., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano, 3(2), 279-290.
Year 2021, Volume: 33 Issue: 3, 429 - 443, 01.09.2021
https://doi.org/10.7240/jeps.875709

Abstract

Project Number

05/2011-74

References

  • [1] Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21(10), 1166-1170.
  • [2] Wang, F., Gao, F., Lan, M., Yuan, H., Huang, Y., & Liu, J. (2009). Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicology In Vitro, 23(5), 808-815.
  • [3] Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113(7), 823-839.
  • [4] Lanone, S., & Boczkowski, J. (2006). Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Current Molecular Medicine, 6(6), 651-663.
  • [5] Choi, H. S., Kim, Y. J., Song, M., Song, M. K., & Ryu, J. C. (2011). Genotoxicity of nano-silica in mammalian cell lines. Toxicology and Environmental Health Sciences, 3(1), 7-13.
  • [6] Warheit, D. B. (2018). Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? F1000Research, 7.
  • [7] Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Jr, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6(1), 1769-1780.
  • [8] Jin, Y., Kannan, S., Wu, M., & Zhao, J. X. (2007). Toxicity of luminescent silica nanoparticles to living cells. Chemical Research in Toxicology, 20(8), 1126-1133.
  • [9] Sadiq, R., Khan, Q. M., Mobeen, A., & Hashmat, A. J. (2015). In vitro toxicological assessment of iron oxide, aluminium oxide and copper nanoparticles in prokaryotic and eukaryotic cell types. Drug and Chemical Toxicology, 38(2), 152-161.
  • [10] Pierscionek, B. K., Li, Y., Yasseen, A. A., Colhoun, L. M., Schachar, R. A., & Chen, W. (2009). Nanoceria have no genotoxic effect on human lens epithelial cells. Nanotechnology, 21(3), 035102.
  • [11] Figuerola, A., Di Corato, R., Manna, L., & Pellegrino, T. (2010). From iron oxide nanoparticles towards advanced iron-based inorganic materials designed for biomedical applications. Pharmacological Research, 62(2), 126-143.
  • [12] Singh, S. P., Rahman, M. F., Murty, U. S. N., Mahboob, M., & Grover, P. (2013). Comparative study of genotoxicity and tissue distribution of nano and micron sized iron oxide in rats after acute oral treatment. Toxicology and Applied Pharmacology, 266(1), 56-66.
  • [13] Kwon, J. Y., Lee, S. Y., Koedrith, P., Lee, J. Y., Kim, K. M., Oh, J. M., & Seo, Y. R. (2014). Lack of genotoxic potential of ZnO nanoparticles in in vitro and in vivo tests. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 761, 1-9.
  • [14] Cordelli, E., Keller, J., Eleuteri, P., Villani, P., Ma-Hock, L., Schulz, M., & Pacchierotti, F. (2017). No genotoxicity in rat blood cells upon 3-or 6-month inhalation exposure to CeO2 or BaSO4 nanomaterials. Mutagenesis, 32(1), 13-22.
  • [15] Du, X., Gao, S., Hong, L., Zheng, X., Zhou, Q., & Wu, J. (2019). Genotoxicity evaluation of titanium dioxide nanoparticles using the mouse lymphoma assay and the Ames test. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 838, 22-27.
  • [16] Cabellos, J., Gimeno-Benito, I., Catalán, J., Lindberg, H. K., Vales, G., Fernandez-Rosas, E., & Janer, G. (2020). Short-term oral administration of non-porous and mesoporous silica did not induce local or systemic toxicity in mice. Nanotoxicology, 28: 1-18.
  • [17] Di Bucchianico, S., Fabbrizi, M. R., Misra, S. K., Valsami-Jones, E., Berhanu, D., Reip, P., & Migliore, L. (2013). Multiple cytotoxic and genotoxic effects induced in vitro by differently shaped copper oxide nanomaterials. Mutagenesis, 28(3), 287-299.
  • [18] Sun, T., Yan, Y., Zhao, Y., Guo, F., & Jiang, C. (2012). Copper oxide nanoparticles induce autophagic cell death in A549 cells. PloS one, 7(8), e43442.
  • [19] Singh, N., Jenkins, G. J., Nelson, B. C., Marquis, B. J., Maffeis, T. G., Brown, A. P., & Doak, S. H. (2012). The role of iron redox state in the genotoxicity of ultrafine superparamagnetic iron oxide nanoparticles. Biomaterials, 33(1), 163-170.
  • [20] Kung, M. L., Hsieh, S. L., Wu, C. C., Chu, T. H., Lin, Y. C., Yeh, B. W., & Hsieh, S. (2015). Enhanced reactive oxygen species overexpression by CuO nanoparticles in poorly differentiated hepatocellular carcinoma cells. Nanoscale, 7(5), 1820-1829.
  • [21] Patel, S., Patel, P., & Bakshi, S. R. (2017). Titanium dioxide nanoparticles: an in vitro study of DNA binding, chromosome aberration assay, and comet assay. Cytotechnology, 69(2), 245-263.
  • [22] Zhou, F., Liao, F., Chen, L., Liu, Y., Wang, W., & Feng, S. (2019). The size-dependent genotoxicity and oxidative stress of silica nanoparticles on endothelial cells. Environmental Science and Pollution Research, 26(2), 1911-1920.
  • [23] Askri, D., Cunin, V., Béal, D., Berthier, S., Chovelon, B., Arnaud, J., & Lehmann, S. G. (2019). Investigating the toxic effects induced by iron oxide nanoparticles on neuroblastoma cell line: an integrative study combining cytotoxic, genotoxic and proteomic tools. Nanotoxicology, 13(8), 1021-1040.
  • [24] Arslan, K., & Akbaba, G. B. (2020). In vitro genotoxicity assessment and comparison of cerium (IV) oxide micro-and nanoparticles. Toxicology and Industrial Health, 36(2), 76-83.
  • [25] Siivola, K. M., Suhonen, S., Hartikainen, M., Catalán, J., & Norppa, H. (2020). Genotoxicity and cellular uptake of nanosized and fine copper oxide particles in human bronchial epithelial cells in vitro. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 856, 503217.
  • [26] Abudayyak, M., Guzel, E., & Özhan, G. (2020). Cupric oxide nanoparticles induce cellular toxicity in liver and intestine cell lines. Advanced Pharmaceutical Bulletin, 10(2), 213.
  • [27] Balasubramanyam, A., Sailaja, N., Mahboob, M., Rahman, M. F., Misra, S., Hussain, S. M., & Grover, P. (2009). Evaluation of genotoxic effects of oral exposure to aluminum oxide nanomaterials in rat bone marrow. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 676(1-2), 41-47.
  • [28] Peters, R. J., Oomen, A. G., van Bemmel, G., van Vliet, L., Undas, A. K., Munniks, S., & van der Lee, M. (2020). Silicon dioxide and titanium dioxide particles found in human tissues. Nanotoxicology, 14(3), 420-432.
  • [29] Rahi, A., Sattarahmady, N., & Heli, H. (2015). Toxicity of nanomaterials-physicochemical effects. SSU Journals, 22(6), 1737-1754.
  • [30] Soto, K., Garza, K. M., & Murr, L. E. (2007). Cytotoxic effects of aggregated nanomaterials. Acta Biomaterialia, 3(3), 351-358.
  • [31] Lu, X., Zhu, T., Chen, C., & Liu, Y. (2014). Right or left: the role of nanoparticles in pulmonary diseases. International Journal of Molecular Sciences, 15(10), 17577-17600.
  • [32] Naseem, S., Gatoo, M. A., Dar, A. M., & Qasim, K. (2014). In vivo toxicity of nanoparticles: Modalities and treatment. European Chemical Bulletin, 3(10), 992-1000.
  • [33] Valdiglesias, V., Kiliç, G., Costa, C., Fernández‐Bertólez, N., Pásaro, E., Teixeira, J. P., & Laffon, B. (2015). Effects of iron oxide nanoparticles: cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environmental and Molecular Mutagenesis, 56(2), 125-148.
  • [34] Wang, W., Zeng, C., Feng, Y., Zhou, F., Liao, F., Liu, Y., & Wang, X. (2018). The size-dependent effects of silica nanoparticles on endothelial cell apoptosis through activating the p53-caspase pathway. Environmental Pollution, 233, 218-225.
  • [35] Fahmy, B., & Cormier, S. A. (2009). Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology In Vitro, 23(7), 1365-1371.
  • [36] Wang, Z., Li, N., Zhao, J., White, J. C., Qu, P., & Xing, B. (2012). CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chemical Research in Toxicology, 25(7), 1512-1521.
  • [37] Braydich-Stolle, L., Hussain, S., Schlager, J. J., & Hofmann, M. C. (2005). In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicological Sciences, 88(2), 412-419.
  • [38] Wang, R., Song, B., Wu, J., Zhang, Y., Chen, A., & Shao, L. (2018). Potential adverse effects of nanoparticles on the reproductive system. International Journal of Nanomedicine, 13, 8487-8506.
  • [39] Lee, J., Jeong, J. S., Kim, S. Y., Lee, S. J., Shin, Y. J., Im, W. J., Yu, & W. J. (2020). Safety assessment of cerium oxide nanoparticles: Combined repeated-dose toxicity with reproductive/developmental toxicity screening and biodistribution in rats. Nanotoxicology, 14(5), 696-710.
  • [40] Brohi, R. D., Wang, L., Talpur, H. S., Wu, D., Khan, F. A., Bhattarai, D., & Huo, L. J. (2017). Toxicity of nanoparticles on the reproductive system in animal models: a review. Frontiers in Pharmacology, 8, 606.
  • [41] Warheit, D. B. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicological Sciences, 101(2), 183-185.
  • [42] Brown, S. C., Kamal, M., Nasreen, N., Baumuratov, A., Sharma, P., Antony, V. B., & Moudgil, B. M. (2007). Influence of shape, adhension and simulated lung mechanics on amorphous silica nanoparticle toxicity. Advanced Powder Technology, 18(1), 69-79.
  • [43] Brunner, T. J., Wick, P., Manser, P., Spohn, P., Grass, R. N., Limbach, L. K., & Stark, W. J. (2006). In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environmental Science & Technology, 40(14), 4374-4381.
  • [44] Misra, S. K., Nuseibeh, S., Dybowska, A., Berhanu, D., Tetley, T. D., & Valsami-Jones, E. (2014). Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution and toxicity of CuO nanomaterials. Nanotoxicology, 8(4), 422-432.
  • [45] Lee, J. H., Ju, J. E., Kim, B. I., Pak, P. J., Choi, E. K., Lee, H. S., & Chung, N. (2014). Rod‐shaped iron oxide nanoparticles are more toxic than sphere‐shaped nanoparticles to murine macrophage cells. Environmental Toxicology and Chemistry, 33(12), 2759-2766.
  • [46] Liu, Y., Xia, Q., Liu, Y., Zhang, S., Cheng, F., Zhong, Z., & Xiao, K. (2014). Genotoxicity assessment of magnetic iron oxide nanoparticles with different particle sizes and surface coatings. Nanotechnology, 25(42), 425101.
  • [47] Yang, L., Kuang, H., Zhang, W., Aguilar, Z. P., Xiong, Y., Lai, W., & Wei, H. (2015). Size dependent biodistribution and toxicokinetics of iron oxide magnetic nanoparticles in mice. Nanoscale, 7(2), 625-636.
  • [48] Corradi, S., Gonzalez, L., Thomassen, L. C., Bilaničová, D., Birkedal, R. K., Pojana, G., & Kirsch-Volders, M. (2012). Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 745(1-2), 21-27.
  • [49] Gonzalez, L., De Santis Puzzonia, M., Ricci, R., Aureli, F., Guarguaglini, G., Cubadda, F., & Kirsch-Volders, M. (2015). Amorphous silica nanoparticles alter microtubule dynamics and cell migration. Nanotoxicology, 9(6), 729-736.
  • [50] Ghosh, S., Ghosh, I., Chakrabarti, M., & Mukherjee, A. (2020). Genotoxicity and biocompatibility of superparamagnetic iron oxide nanoparticles: Influence of surface modification on biodistribution, retention, DNA damage and oxidative stress. Food and Chemical Toxicology, 136, 110989.
  • [51] Zeiger E. (2010). Genetic Toxicology Testing. Comprehensive Toxicology. 2nd (Ed CA McQueen), Chapel Hill USA, s.139-158.
  • [52] Ünal, F., Yüzbaşıoğlu, D., Yılmaz, S., Akıncı, N., & Aksoy, H. (2011). Genotoxic effects of chlorophenoxy herbicide diclofop-methyl in mice in vivo and in human lymphocytes in vitro. Drug and Chemical Toxicology, 34(4), 390-395.
  • [53] Yüzbaşıoğlu, D., Yilmaz, E. A., & Fatma, Ünal (2016). Antidepresan ilaçlar ve genotoksisite. TÜBAV Bilim Dergisi, 9(1), 17-28.
  • [54] Dusinska, M., Tulinska, J., El Yamani, N., Kuricova, M., Liskova, A., Rollerova, E., & Smolkova, B. (2017). Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: new strategies for toxicity testing? Food and Chemical Toxicology, 109, 797-811.
  • [55] Elespuru, R., Pfuhler, S., Aardema, M. J., Chen, T., Doak, S. H., Doherty, A., & Tanir, J. Y. (2018). Genotoxicity assessment of nanomaterials: Recommendations on best practices, assays, and methods. Toxicological Sciences, 164(2), 391-416.
  • [56] Avuloglu-Yilmaz, E., Yuzbasioglu, D., & Unal, F. (2020). In vitro genotoxicity assessment of monopotassium glutamate and magnesium diglutamate. Toxicology in Vitro, 65, 104780.
  • [57] Unal, F., Demirtaş Korkmaz, F., Suludere, Z., Erol, O., & Yuzbasioglu, D. (2021). Genotoxicity of Two Nanoparticles: Titanium Dioxide and Zinc Oxide. Gazi University Journal of Science, DOI: 10.35378/gujs.826911.
  • [58]Golbamaki, N., Rasulev, B., Cassano, A., Robinson, R. L. M., Benfenati, E., Leszczynski, J., & Cronin, M. T. (2015). Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale, 7(6), 2154-2198.
  • [59] Magdolenova, Z., Collins, A., Kumar, A., Dhawan, A., Stone, V., & Dusinska, M. (2014). Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8(3), 233-278.
  • [60] Huang, R., Zhou, Y., Hu, S., & Zhou, P. K. (2019). Targeting and non-targeting effects of nanomaterials on DNA: challenges and perspectives. Reviews in Environmental Science and Bio/Technology, 18(4), 617-634.
  • [61] Yazdimamaghani, M., Moos, P. J., Dobrovolskaia, M. A., & Ghandehari, H. (2019). Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomedicine: Nanotechnology, Biology and Medicine, 16, 106-125.
  • [62] McArt, D. G., McKerr, G., Saetzler, K., Howard, C. V., Downes, C. S., & Wasson, G. R. (2010). Comet sensitivity in assessing DNA damage and repair in different cell cycle stages. Mutagenesis, 25(3), 299-303.
  • [63] Collins, A. R. (2014). Measuring oxidative damage to DNA and its repair with the comet assay. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(2), 794-800.
  • [64] Azqueta, A., Langie, S. A., Boutet-Robinet, E., Duthie, S., Ladeira, C., Møller, P., & Godschalk, R. W. (2019). DNA repair as a human biomonitoring tool: Comet assay approaches. Mutation Research/Reviews in Mutation Research, 781, 71-87.
  • [65] Erikel, E., Yuzbasioglu, D., & Unal, F. (2020). Genotoxic and antigenotoxic potential of amygdalin on isolated human lymphocytes by the comet assay. Journal of Food Biochemistry, 44(10), e13436.
  • [66] Langie, S. A., Azqueta, A., & Collins, A. R. (2015). The comet assay: past, present, and future. Frontiers in Genetics, 13(6):266. doi: 10.3389/fgene.
  • [67] Fenech, M. (2007). Cytokinesis-block micronucleus cytome assay. Nature Protocols, 2(5), 1084.
  • [68] Fenech, M., Kirsch-Volders, M., Natarajan, A. T., Surralles, J., Crott, J. W., Parry, J., & Thomas, P. (2011). Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis, 26(1), 125-132.
  • [69] Bonassi, S., Znaor, A., Ceppi, M., Lando, C., Chang, W. P., Holland, N., & Fenech, M. (2007). An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis, 28(3), 625-631.
  • [70] Boffetta, P., Van Der Hel, O., Norppa, H., Fabianova, E., Fucic, A., Gundy, S., & Bonassi, S. (2007). Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. American Journal of Epidemiology, 165(1), 36-43.
  • [71] Vodenkova, S., Polivkova, Z., Musak, L., Smerhovsky, Z., Zoubkova, H., Sytarova, S., & Vodicka, P. (2015). Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis, 30(4), 557-563.
  • [72] Adhikari, A. (2019). Micronuclei (MN), an Important Cancer Biomarker. Edelweiss Cancer. 1(1):37-42.
  • [73] Wang, H., Wang, Y., Kota, K. K., Sun, B., Kallakury, B., Mikhail, N. N., & Zheng, Y. L. (2017). Strong associations between chromosomal aberrations in blood lymphocytes and the risk of urothelial and squamous cell carcinoma of the bladder. Scientific Reports, 7(1), 1-10.
  • [74] Vernon, R. E. (2013). Which elements are metalloids? Journal of Chemical Education, 90(12), 1703-1707.
  • [75] Ju-Nam, Y., & Lead, J. R. (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the total Environment, 400(1-3), 396-414.
  • [76] Durnev, A. D., Solomina, A. S., Shreder, E. D., Nemova, E. P., Shreder, O., Daugel'-Dauge, N., & Seredenin, S. (2010). In vivo study of genotoxicity and teratogenicity of silica nanocrystals. International Journal of Biomedical Nanoscience and Nanotechnology, 1(1), 70-86.
  • [77] Napierska, D., Thomassen, L. C., Lison, D., Martens, J. A., & Hoet, P. H. (2010). The nanosilica hazard: another variable entity. Particle and Fibre Toxicology, 7(1), 1-32.
  • [78] Akbaba, G. B., & Türkez, H. (2018). Investigation of the genotoxicity of aluminum oxide, β-tricalcium phosphate, and zinc oxide nanoparticles in vitro. International Journal of Toxicology, 37(3), 216-222.
  • [79] Hashimoto, M., & Imazato, S. (2015). Cytotoxic and genotoxic characterization of aluminum and silicon oxide nanoparticles in macrophages. Dental Materials, 31(5), 556-564.
  • [80] Di Virgilio, A. L., Reigosa, M., Arnal, P. M., & De Mele, M. F. L. (2010). Comparative study of the cytotoxic and genotoxic effects of titanium oxide and aluminium oxide nanoparticles in Chinese hamster ovary (CHO-K1) cells. Journal of Hazardous Materials, 177(1-3), 711-718.
  • [81] Rajiv, S., Jerobin, J., Saranya, V., Nainawat, M., Sharma, A., Makwana, P., & Chandrasekaran, N. (2016). Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro. Human Experimental Toxicology, 35(2), 170-183.
  • [82] Kumari, M., Singh, S. P., Chinde, S., Rahman, M. F., Mahboob, M., & Grover, P. (2014). Toxicity study of cerium oxide nanoparticles in human neuroblastoma cells. International Journal of Toxicology, 33(2), 86-97.
  • [83] El Yamani, N., Collins, A. R., Rundén-Pran, E., Fjellsbø, L. M., Shaposhnikov, S., Zienolddiny, S., & Dusinska, M. (2017). In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis, 32(1), 117-126.
  • [84] Song, M. F., Li, Y. S., Kasai, H., & Kawai, K. (2012). Metal nanoparticle-induced micronuclei and oxidative DNA damage in mice. Journal of Clinical Biochemistry and Nutrition, 50(3):211-216.
  • [85] Schneider, T., Westermann, M., & Glei, M. (2017). In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Archives of Toxicology, 91(11), 3517-3527.
  • [86] Gomaa, I. O., Kader, M. H. A., Eldin, T. A. S., & Heikal, O. A. (2013). Evaluation of in vitro mutagenicity and genotoxicity of magnetite nanoparticles. Drug Discoveries & Therapeutics, 7(3), 116-123.
  • [87] Ahamed, M., A Alhadlaq, H., Alam, J., Khan, M., Ali, D., & Alarafi, S. (2013). Iron oxide nanoparticle-induced oxidative stress and genotoxicity in human skin epithelial and lung epithelial cell lines. Current Pharmaceutical Design, 19(37), 6681-6690.
  • [88] Fernández‐Bertólez, N., Costa, C., Brandão, F., Duarte, J. A., Teixeira, J. P., Pásaro, E., & Laffon, B. (2019). Evaluation of cytotoxicity and genotoxicity induced by oleic acid‐coated iron oxide nanoparticles in human astrocytes. Environmental and Molecular Mutagenesis, 60(9), 816-829.
  • [89] Downs, T. R., Crosby, M. E., Hu, T., Kumar, S., Sullivan, A., Sarlo, K., & Pfuhler, S. (2012). Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 745(1-2), 38-50.
  • [90] Lankoff, A., Arabski, M., Wegierek-Ciuk, A., Kruszewski, M., Lisowska, H., Banasik-Nowak, A., & Slomkowski, S. (2012). Effect of surface modification of silica nanoparticles on toxicity and cellular uptake by human peripheral blood lymphocytes in vitro. Nanotoxicology, 7(3), 235-250.
  • [91] Gea, M., Bonetta, S., Iannarelli, L., Giovannozzi, A. M., Maurino, V., Bonetta, S., & Schilirò, T. (2019). Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food and Chemical Toxicology, 127, 89-100.
  • [92] Uzar, N. K., Abudayyak, M., Akcay, N., Algun, G., & Özhan, G. (2015). Zinc oxide nanoparticles induced cyto-and genotoxicity in kidney epithelial cells. Toxicology Mechanisms and Methods, 25(4), 334-339.
  • [93] Shalini, D., Senthilkumar, S., & Rajaguru, P. (2018). Effect of size and shape on toxicity of zinc oxide (ZnO) nanomaterials in human peripheral blood lymphocytes. Toxicology Mechanisms and Methods, 28(2), 87-94.
  • [94] Ghosh, M., Ghosh, I., Godderis, L., Hoet, P., & Mukherjee, A. (2019). Genotoxicity of engineered nanoparticles in higher plants. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 842, 132-145.
  • [95] Park, C. B., Jung, J. W., Baek, M., Sung, B., Park, J. W., Seol, Y., & Kim, Y. J. (2019). Mixture toxicity of metal oxide nanoparticles and silver ions on Daphnia magna. Journal of Nanoparticle Research, 21(8), 1-13.
  • [96] Hou, J., Wu, Y., Li, X., Wei, B., Li, S., & Wang, X. (2018). Toxic effects of different types of zinc oxide nanoparticles on algae, plants, invertebrates, vertebrates and microorganisms. Chemosphere, 193, 852-860.
  • [97] Zhu, Y., Wu, J., Chen, M., Liu, X., Xiong, Y., Wang, Y., & Wang, X. (2019). Recent advances in the biotoxicity of metal oxide nanoparticles: impacts on plants, animals and microorganisms. Chemosphere, 237, 124403.
  • [98] Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., & Barsova, N. (2020). ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health, 42(1), 147-158.
  • [99] Surendhiran, D., Cui, H., & Lin, L. (2020). Mode of Transfer, Toxicity and Negative Impacts of Engineered Nanoparticles on Environment, Human and Animal Health. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization, s.165-204.
  • [100] Doak, S. H., Liu, Y., & Chen, C. (2012). Genotoxicity and cancer. Adverse Effects of Engineered Nanomaterials; Elsevier Inc.: Amsterdam, The Netherlands, s. 243-261.
  • [101] Kryston, T. B., Georgiev, A. B., Pissis, P., & Georgakilas, A. G. (2011). Role of oxidative stress and DNA damage in human carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 711(1-2), 193-201.
  • [102] Gong, C., Tao, G., Yang, L., Liu, J., He, H., & Zhuang, Z. (2012). The role of reactive oxygen species in silicon dioxide nanoparticle-induced cytotoxicity and DNA damage in HaCaT cells. Molecular Biology Reports, 39(4), 4915-4925.
  • [103] Könczöl, M., Weiß, A., Gminski, R., Merfort, I., & Mersch-Sundermann, V. (2013). Oxidative stress and inflammatory response to printer toner particles in human epithelial A549 lung cells. Toxicology Letters, 216(2-3), 171-180.
  • [104] Laha, D., Pramanik, A., Maity, J., Mukherjee, A., Pramanik, P., Laskar, A., & Karmakar, P. (2014). Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochimica et Biophysica Acta (BBA)-General Subjects, 1840(1), 1-9.
  • [105] Bulcke, F., Thiel, K., & Dringen, R. (2014). Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes. Nanotoxicology, 8(7), 775-785.
  • [106] Canlı, E. G. (2020). Bakır Oksit Nanopartikülü Etkisinde Kalan Memelilerde (Rattus norvegicus var. albinos) Bazı Metabolik Tepkilerin Incelenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(2), 304-315.
  • [107] Paunovic, J., Vucevic, D., Radosavljevic, T., Mandić-Rajčević, S., & Pantic, I. (2020). Iron-based nanoparticles and their potential toxicity: Focus on oxidative stress and apoptosis. Chemico-biological interactions, 316, 108935.
  • [108] Singh, N., Manshian, B., Jenkins, G. J., Griffiths, S. M., Williams, P. M., Maffeis, T. G., & Doak, S. H. (2009). NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials, 30(23-24), 3891-3914.
  • [109] Choi, A. O., Brown, S. E., Szyf, M., & Maysinger, D. (2008). Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. Journal of molecular medicine, 86(3), 291-302.
  • [110] Athinarayanan, J., Periasamy, V. S., Alsaif, M. A., Al-Warthan, A. A., & Alshatwi, A. A. (2014). Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biology and Toxicology, 30(2), 89-100.
  • [111] Marano, F., Hussain, S., Rodrigues-Lima, F., Baeza-Squiban, A., & Boland, S. (2011). Nanoparticles: molecular targets and cell signalling. Archives of Toxicology, 85(7), 733-741.
  • [112] Guichard, Y., Schmit, J., Darne, C., Gaté, L., Goutet, M., Rousset, D., & Binet, S. (2012). Cytotoxicity and genotoxicity of nanosized and microsized titanium dioxide and iron oxide particles in Syrian hamster embryo cells. Annals of Occupational Hygiene, 56(5), 631-644.
  • [113] AshaRani, P. V., Low Kah Mun, G., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano, 3(2), 279-290.
There are 113 citations in total.

Details

Primary Language Turkish
Journal Section Review
Authors

Yasemin Saygılı 0000-0003-0903-0313

Deniz Yüzbaşıoğlu 0000-0003-2756-7712

Fatma Ünal 0000-0002-7468-6186

Project Number 05/2011-74
Publication Date September 1, 2021
Published in Issue Year 2021 Volume: 33 Issue: 3

Cite

APA Saygılı, Y., Yüzbaşıoğlu, D., & Ünal, F. (2021). Metal Oksit Nanopartiküllerin Genotoksik Etkileri. International Journal of Advances in Engineering and Pure Sciences, 33(3), 429-443. https://doi.org/10.7240/jeps.875709
AMA Saygılı Y, Yüzbaşıoğlu D, Ünal F. Metal Oksit Nanopartiküllerin Genotoksik Etkileri. JEPS. September 2021;33(3):429-443. doi:10.7240/jeps.875709
Chicago Saygılı, Yasemin, Deniz Yüzbaşıoğlu, and Fatma Ünal. “Metal Oksit Nanopartiküllerin Genotoksik Etkileri”. International Journal of Advances in Engineering and Pure Sciences 33, no. 3 (September 2021): 429-43. https://doi.org/10.7240/jeps.875709.
EndNote Saygılı Y, Yüzbaşıoğlu D, Ünal F (September 1, 2021) Metal Oksit Nanopartiküllerin Genotoksik Etkileri. International Journal of Advances in Engineering and Pure Sciences 33 3 429–443.
IEEE Y. Saygılı, D. Yüzbaşıoğlu, and F. Ünal, “Metal Oksit Nanopartiküllerin Genotoksik Etkileri”, JEPS, vol. 33, no. 3, pp. 429–443, 2021, doi: 10.7240/jeps.875709.
ISNAD Saygılı, Yasemin et al. “Metal Oksit Nanopartiküllerin Genotoksik Etkileri”. International Journal of Advances in Engineering and Pure Sciences 33/3 (September 2021), 429-443. https://doi.org/10.7240/jeps.875709.
JAMA Saygılı Y, Yüzbaşıoğlu D, Ünal F. Metal Oksit Nanopartiküllerin Genotoksik Etkileri. JEPS. 2021;33:429–443.
MLA Saygılı, Yasemin et al. “Metal Oksit Nanopartiküllerin Genotoksik Etkileri”. International Journal of Advances in Engineering and Pure Sciences, vol. 33, no. 3, 2021, pp. 429-43, doi:10.7240/jeps.875709.
Vancouver Saygılı Y, Yüzbaşıoğlu D, Ünal F. Metal Oksit Nanopartiküllerin Genotoksik Etkileri. JEPS. 2021;33(3):429-43.