Research Article
BibTex RIS Cite

Trachystemon orientalis L. Ekstraktlarının Kozmetik Endüstrisinde Kullanım Potansiyeli: Cilt Koruyucu, Güneş Koruyucu ve Yaşlanma Karşıtı İçerikleri

Year 2022, Volume: 34 Issue: 1, 147 - 156, 30.03.2022
https://doi.org/10.7240/jeps.1056274

Abstract

Son yıllarda kozmetik alanında kullanılan ürünlerin bitkisel kaynaklı olması daha çok tercih edilir hale gelmiştir. Özellikle antioksidan özelliği yüksek bitkilerin kozmetik ürünlerin içeriğinde yer alması öncelikli istek haline gelmiştir. Sadece yöre halkı tarafından kullanılan endemik bitkiler, başta kozmetik olmak üzere farklı endüstrilerde kullanılmak üzere yetiştirilirse ekonomik açıdan daha karlı olacaktır. T.orientalis, Türkiye'nin sadece Karadeniz bölgesinde yetişen endemik bir türdür. Bu çalışma, bu bitki ekstraktlarının kozmetik endüstrisinde kullanım potansiyeline sahip olduğunu göstermeyi amaçlamaktadır. Bu amaçla öncelikle T.orientalis'in gövde, çiçek ve yaprak kısımları aseton ile ekstrakte edilmiş ve antioksidan aktiviteleri ölçülmüştür. Sonuçlara göre antioksidan aktivite özellikle gövde ekstraktlarında (DPPH 57,12 mg L-askorbik asit/g; toplam fenol 288,10 ± 8,55 mg/g kuru ağırlık) yüksek bulunmuştur. Daha sonra ekstraktların S. aureus üzerindeki antibakteriyel aktivitesi araştırılmıştır fakat etkili bir aktivite bulunamamıştır. Ayrıca SPF değerleri ve kollajenaz, tirozinaz ve elastaz inhibe edici aktiviteleri ölçülmüştür. En iyi sonuçlar gövde (SPF 31,18 ± %0,18; anti-kollajenaz %87,25; anti-tirozinaz %11,47; anti-elastaz %57,64) ve yaprak ekstraktlarında (SPF 31, %27 ± 0,24; anti-kollajenaz %97,57; anti-tirozinaz %15,03; anti-elastaz ND) tespit edilmiştir. Sonuç olarak, T.orientalis'in özellikle gövde kısımlarının kozmetikte fotokoruyucu ve yaşlanma karşıtı olarak kullanılabileceği ön görülmüştür.

References

  • Khuanekkaphan, M., Noysang, C., & Khobjai, W. (2020). Anti-aging potential and phytochemicals of Centella asiatica, Nelumbo nucifera, and Hibiscus sabdariffa extracts. Journal of Advanced Pharmaceutical Technology & Research, 11(4), 174.
  • Hubbard, G., Kyle, R. G., Neal, R. D., Marmara, V., Wang, Z., & Dombrowski, S. U. (2018). Promoting sunscreen use and skin self-examination to improve early detection and prevent skin cancer: quasi-experimental trial of an adolescent psycho-educational intervention. BMC Public Health, 18(1), 1-15.
  • Sharma, T., Tyagi, V., & Bansal, M. (2020). Determination of sun protection factor of vegetable and fruit extracts using UV–Visible spectroscopy: A green approach. Sustainable Chemistry and Pharmacy, 18, 100347.
  • Schneider, S. L., & Lim, H. W. (2019). A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatology, photoimmunology & photomedicine, 35(6), 442-446.
  • Osmond, M. J., & Mccall, M. J. (2010). Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology, 4(1), 15-41.
  • Tyagi, N., Srivastava, S. K., Arora, S., Omar, Y., Ijaz, Z. M., Ahmed, A. G., ... & Singh, S. (2016). Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis. Cancer letters, 383(1), 53-61.
  • Vainio, H., Miller, A. B., & Bianchini, F. (2000). An international evaluation of the cancer–preventive potential of sunscreens.
  • Westerdahl, J., Ingvar, C., Måsbäck, A., & Olsson, H. (2000). Sunscreen use and malignant melanoma. International journal of cancer, 87(1), 145-150.
  • Ebrahimzadeh, M. A., Enayatifard, R., Khalili, M., Ghaffarloo, M., Saeedi, M., & Charati, J. Y. (2014). Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iranian journal of pharmaceutical research: IJPR, 13(3), 1041.
  • Clinton, S. K., Giovannucci, E. L., & Hursting, S. D. (2020). The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. The Journal of nutrition, 150(4), 663-671.
  • Skin cancers. World Health Organization. https://www.who.int/uv/publications/en/primaryteach Date accessed: October 21, 2021
  • Shah, H., & Mahajan, S. R. (2013). Photoaging: New insights into its stimulators, complications, biochemical changes and therapeutic interventions. Biomedicine & Aging Pathology, 3(3), 161-169.
  • Hashemi, Z., Ebrahimzadeh, M. A., & Khalili, M. (2019). Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran. Tropical Journal of Pharmaceutical Research, 18(7), 1443-1448.
  • de Oliveira-Junior, R. G., Souza, G. R., Guimarães, A. L., de Oliveira, A. P., de Souza Araújo, C., Silva, J. C., ... & da Silva Almeida, J. R. G. (2015). Photoprotective, antibacterial activity and determination of phenolic compounds of Neoglaziovia variegata (Bromeliaceae) by high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. African Journal of Pharmacy and Pharmacology, 9(22), 576-584.
  • Oliveira, M. B., Valentim, I. B., Santos, T. R., Xavier, J. A., Ferro, J. N., Barreto, E. O., ... & Goulart, M. O. (2021). Photoprotective and antiglycation activities of non-toxic Cocos nucifera Linn.(Arecaceae) husk fiber ethanol extract and its phenol chemical composition. Industrial Crops and Products, 162, 113246.
  • Shukri, S. M., Pardi, F., & Sidik, N. J. (2021). In Vitro anti-collagenase activity and total phenolic content of five selected herbs: a review. Science Letters, 15(1), 117-127.
  • Piccinino, D., Capecchi, E., Tomaino, E., Gabellone, S., Gigli, V., Avitabile, D., & Saladino, R. (2021). Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants, 10(2), 274.
  • Era, B., Floris, S., Sogos, V., Porcedda, C., Piras, A., Medda, R., ... & Pintus, F. (2021). Anti-Aging Potential of Extracts from Washingtonia filifera Seeds. Plants, 10(1), 151.
  • Ganceviciene, R., Liakou, A. I., Theodoridis, A., Makrantonaki, E., & Zouboulis, C. C. (2012). Skin anti-aging strategies. Dermato-endocrinology, 4(3), 308-319.
  • Nantarat, N., Mueller, M., Lin, W. C., Lue, S. C., Viernstein, H., Chansakaow, S., ... & Leelapornpisid, P. (2020). Sesaminol diglucoside isolated from black sesame seed cake and its antioxidant, anti-collagenase and anti-hyaluronidase activities. Food Bioscience, 36, 100628.
  • Lee, J. H., & Kim, T. Y. (1999). Relationship between constitutive skin color and ultraviolet light sensitivity in Koreans. Photodermatology, photoimmunology & photomedicine, 15(6), 231-235.
  • Chompoo, J., Upadhyay, A., Fukuta, M., & Tawata, S. (2012). Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC complementary and alternative medicine, 12(1), 1-9.
  • Deniz, F. S. S., Orhan, I. E., & Duman, H. (2021). Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochemistry Letters, 45, 171-183.
  • Özen, T. (2010). Antioxidant activity of wild edible plants in the Black Sea Region of Turkey. Grasas y aceites, 61(1), 86-94.
  • Çol Ayvaz, M. (2015). Antioxidant activity of Trachystemon orientalis (L.) G. Don (Borage) grown and eaten as food in Ordu, Turkey. Herba Polonica, 61(4).
  • Sacan, O. (2018). Antioxidant Activity, Total Phenol and Total Flavonoid Contents of Trachystemon orientalis (L.) G. Don. European Journal of Biology, 77(2), 70-75.
  • Ayhan, B. S., Yalçın, E., Çavuşoğlu, K., & Acar, A. (2019). Antidiabetic potential and multi-biological activities of Trachystemon orientalis extracts. Journal of Food Measurement and Characterization, 13(4), 2887-2893.
  • Clarke, G., Ting, K. N., Wiart, C., & Fry, J. (2013). High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2(1), 1-10.
  • Yang, Y. C., Lii, C. K., Lin, A. H., Yeh, Y. W., Yao, H. T., Li, C. C., ... & Chen, H. W. (2011). Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radical Biology and Medicine, 51(11), 2073-2081.
  • Mansur, J. D. S., Breder, M. N. R., Mansur, M. C. D. A., & Azulay, R. D. (1986). Determinaçäo do fator de proteçäo solar por espectrofotometria. An. Bras. Dermatol, 121-4.
  • Chiari, M. E., Joray, M. B., Ruiz, G., Palacios, S. M., & Carpinella, M. C. (2010). Tyrosinase inhibitory activity of native plants from central Argentina: Isolation of an active principle from Lithrea molleoides. Food chemistry, 120(1), 10-14.
  • Van Wart, H. E., & Steinbrink, D. R. (1981). A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Analytical biochemistry, 113(2), 356-365.
  • Kusumawati, I., & Indrayanto, G. (2013). Natural antioxidants in cosmetics. In Studies in natural products chemistry (Vol. 40, pp. 485-505). Elsevier.
  • Sun Protection Factor (SPF). Center for Drug Evaluation and Research. Food and Drug Administration https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/sun-protection-factor-spf Date accessed: October 21, 2021
  • Ratnasooriya, W. D., Pathirana, R. N., Dissanayake, A. S., Samanmali, B. L. C., & Desman, P. K. (2016). Evaluation of invitro sun screen activities of salt marshy plants Suaeda monoica, Suaeda maritima and Halosarcia indica. International Journal of Pharmaceutical Research & Allied Sciences, 5(2).
  • Khazaeli, P., & Mehrabani, M. (2010). Screening of sun protective activity of the ethyl acetate extracts of some medicinal plants. Iranian Journal of Pharmaceutical Research, (1), 5-9.
  • Yasmeen, S. H. A. G. U. F. T. A., & Gupta, P. R. O. M. I. L. A. (2016). In vitro demonstration of Dalbergia sissoo (Indian rosewood) methanolic extracts as potential agents for sunscreening and DNA nick prevention. Int J Pharm Pharm Sci, 8(6), 175-81.
  • Saidi, I., Nimbarte, V. D., Schwalbe, H., Waffo-Téguo, P., Harrath, A. H., Mansour, L., ... & Jannet, H. B. (2020). Anti-tyrosinase, anti-cholinesterase and cytotoxic activities of extracts and phytochemicals from the Tunisian Citharexylum spinosum L.: Molecular docking and SAR analysis. Bioorganic Chemistry, 102, 104093.
  • Chatatikun, M., Supjaroen, P., Promlat, P., Chantarangkul, C., Waranuntakul, S., Nawarat, J., & Tangpong, J. (2020). Antioxidant and Tyrosinase Inhibitory Properties of an Aqueous Extract of Garcinia atroviridis Griff. ex. T. Anderson Fruit Pericarps. Pharmacognosy Journal, 12(1).
  • Bakhouche, I., Aliat, T., Boubellouta, T., Gali, L., Şen, A., & Bellik, Y. (2021). Phenolic contents and in vitro antioxidant, anti-tyrosinase, and anti-inflammatory effects of leaves and roots extracts of the halophyte Limonium delicatulum. South African Journal of Botany, 139, 42-49.
  • Chelly, S., Chelly, M., Occhiuto, C., Cimino, F., Cristani, M., Saija, A., ... & Antonio, S. (2021). Evaluation of antioxidant, antinflammatory and antityrosinase potential of extracts from different aerial parts of Rhanterium suaveolens from Tunisia. Chemistry & Biodiversity.
  • Mukherjee, P. K., Biswas, R., Sharma, A., Banerjee, S., Biswas, S., & Katiyar, C. K. (2018). Validation of medicinal herbs for anti-tyrosinase potential. Journal of herbal medicine, 14, 1-16.
  • Ilhan, M., Zengin, G., Küpeli Akkol, E., Aktümsek, A., & Süntar, I. (2016). The importance of Asphodeline species on enzyme inhibition: anti-elastase, anti-hyaluronidase and anti-collagenase potential. Turk. J. Pharm. Sci, 13, 323-327.
  • Kim, S. Y., Go, K. C., Song, Y. S., Jeong, Y. S., Kim, E. J., & Kim, B. J. (2014). Extract of the mycelium of T. matsutake inhibits elastase activity and TPA-induced MMP-1 expression in human fibroblasts. International journal of molecular medicine, 34(6), 1613-1621.
  • Chiocchio, I., Mandrone, M., Sanna, C., Maxia, A., Tacchini, M., & Poli, F. J. I. C. (2018). Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Industrial crops and products, 122, 498-505.
  • Gangadharan, A. (2021). Free radical scavenging and elastase inhibitory activity of different extracts of Leucas aspera (Willd.) Link-An in vitro study. Indian Journal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)], 12(1), 61-67.
  • Uzun, E., Sariyar, G., Adsersen, A., Karakoc, B., Ötük, G., Oktayoglu, E., & Pirildar, S. (2004). Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. Journal of ethnopharmacology, 95(2-3), 287-296.

Potential Application of Trachystemon orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients

Year 2022, Volume: 34 Issue: 1, 147 - 156, 30.03.2022
https://doi.org/10.7240/jeps.1056274

Abstract

In recent years, it has become more preferable for the products to be used in cosmetics to be of herbal origin. In particular, plants with high antioxidant properties are preferred to be the source for cosmetic products. Endemic plants, which are used only by the local people, will be more profitable economically if they are grown for use in different industries, especially in cosmetics. T.orientalis is an endemic species that grows only in the Black Sea region of Turkey. This study aims to show that these plant extracts have the potential for use in the cosmetic industry. For this purpose, firstly the stem, flower, and leaf parts of T.orientalis were extracted with acetone and their antioxidant activities were measured. According to the results, antioxidant activity was especially high in stem extracts (DPPH 57,12 mg L-ascorbic acid/g; total phenol 288,10 ± 8,55 mg/g dry weight). Then, the antibacterial activity of the extracts on S. aureus was investigated. As a result, no effective activity was found. In addition, SPF values and collagenase, tyrosinase, and elastase inhibiting activities were measured. The best results were observed in the stem (SPF 31,18 ± 0,18%; anti-collagenase 87,25%; anti-tyrosinase 11,47%; anti-elastase 57,64%) and leaf extracts (SPF 31,27 ± 0,24%; anti-collagenase 97,57%; anti-tyrosinase 15,03%; anti-elastase ND). As a result, it has been seen that especially the stem parts of T.orientalis can be used as an ingredient for photoprotective and antiaging purposes in cosmetics.

References

  • Khuanekkaphan, M., Noysang, C., & Khobjai, W. (2020). Anti-aging potential and phytochemicals of Centella asiatica, Nelumbo nucifera, and Hibiscus sabdariffa extracts. Journal of Advanced Pharmaceutical Technology & Research, 11(4), 174.
  • Hubbard, G., Kyle, R. G., Neal, R. D., Marmara, V., Wang, Z., & Dombrowski, S. U. (2018). Promoting sunscreen use and skin self-examination to improve early detection and prevent skin cancer: quasi-experimental trial of an adolescent psycho-educational intervention. BMC Public Health, 18(1), 1-15.
  • Sharma, T., Tyagi, V., & Bansal, M. (2020). Determination of sun protection factor of vegetable and fruit extracts using UV–Visible spectroscopy: A green approach. Sustainable Chemistry and Pharmacy, 18, 100347.
  • Schneider, S. L., & Lim, H. W. (2019). A review of inorganic UV filters zinc oxide and titanium dioxide. Photodermatology, photoimmunology & photomedicine, 35(6), 442-446.
  • Osmond, M. J., & Mccall, M. J. (2010). Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology, 4(1), 15-41.
  • Tyagi, N., Srivastava, S. K., Arora, S., Omar, Y., Ijaz, Z. M., Ahmed, A. G., ... & Singh, S. (2016). Comparative analysis of the relative potential of silver, Zinc-oxide and titanium-dioxide nanoparticles against UVB-induced DNA damage for the prevention of skin carcinogenesis. Cancer letters, 383(1), 53-61.
  • Vainio, H., Miller, A. B., & Bianchini, F. (2000). An international evaluation of the cancer–preventive potential of sunscreens.
  • Westerdahl, J., Ingvar, C., Måsbäck, A., & Olsson, H. (2000). Sunscreen use and malignant melanoma. International journal of cancer, 87(1), 145-150.
  • Ebrahimzadeh, M. A., Enayatifard, R., Khalili, M., Ghaffarloo, M., Saeedi, M., & Charati, J. Y. (2014). Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iranian journal of pharmaceutical research: IJPR, 13(3), 1041.
  • Clinton, S. K., Giovannucci, E. L., & Hursting, S. D. (2020). The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. The Journal of nutrition, 150(4), 663-671.
  • Skin cancers. World Health Organization. https://www.who.int/uv/publications/en/primaryteach Date accessed: October 21, 2021
  • Shah, H., & Mahajan, S. R. (2013). Photoaging: New insights into its stimulators, complications, biochemical changes and therapeutic interventions. Biomedicine & Aging Pathology, 3(3), 161-169.
  • Hashemi, Z., Ebrahimzadeh, M. A., & Khalili, M. (2019). Sun protection factor, total phenol, flavonoid contents and antioxidant activity of medicinal plants from Iran. Tropical Journal of Pharmaceutical Research, 18(7), 1443-1448.
  • de Oliveira-Junior, R. G., Souza, G. R., Guimarães, A. L., de Oliveira, A. P., de Souza Araújo, C., Silva, J. C., ... & da Silva Almeida, J. R. G. (2015). Photoprotective, antibacterial activity and determination of phenolic compounds of Neoglaziovia variegata (Bromeliaceae) by high performance liquid chromatography-diode array detector (HPLC-DAD) analysis. African Journal of Pharmacy and Pharmacology, 9(22), 576-584.
  • Oliveira, M. B., Valentim, I. B., Santos, T. R., Xavier, J. A., Ferro, J. N., Barreto, E. O., ... & Goulart, M. O. (2021). Photoprotective and antiglycation activities of non-toxic Cocos nucifera Linn.(Arecaceae) husk fiber ethanol extract and its phenol chemical composition. Industrial Crops and Products, 162, 113246.
  • Shukri, S. M., Pardi, F., & Sidik, N. J. (2021). In Vitro anti-collagenase activity and total phenolic content of five selected herbs: a review. Science Letters, 15(1), 117-127.
  • Piccinino, D., Capecchi, E., Tomaino, E., Gabellone, S., Gigli, V., Avitabile, D., & Saladino, R. (2021). Nano-Structured Lignin as Green Antioxidant and UV Shielding Ingredient for Sunscreen Applications. Antioxidants, 10(2), 274.
  • Era, B., Floris, S., Sogos, V., Porcedda, C., Piras, A., Medda, R., ... & Pintus, F. (2021). Anti-Aging Potential of Extracts from Washingtonia filifera Seeds. Plants, 10(1), 151.
  • Ganceviciene, R., Liakou, A. I., Theodoridis, A., Makrantonaki, E., & Zouboulis, C. C. (2012). Skin anti-aging strategies. Dermato-endocrinology, 4(3), 308-319.
  • Nantarat, N., Mueller, M., Lin, W. C., Lue, S. C., Viernstein, H., Chansakaow, S., ... & Leelapornpisid, P. (2020). Sesaminol diglucoside isolated from black sesame seed cake and its antioxidant, anti-collagenase and anti-hyaluronidase activities. Food Bioscience, 36, 100628.
  • Lee, J. H., & Kim, T. Y. (1999). Relationship between constitutive skin color and ultraviolet light sensitivity in Koreans. Photodermatology, photoimmunology & photomedicine, 15(6), 231-235.
  • Chompoo, J., Upadhyay, A., Fukuta, M., & Tawata, S. (2012). Effect of Alpinia zerumbet components on antioxidant and skin diseases-related enzymes. BMC complementary and alternative medicine, 12(1), 1-9.
  • Deniz, F. S. S., Orhan, I. E., & Duman, H. (2021). Profiling cosmeceutical effects of various herbal extracts through elastase, collagenase, tyrosinase inhibitory and antioxidant assays. Phytochemistry Letters, 45, 171-183.
  • Özen, T. (2010). Antioxidant activity of wild edible plants in the Black Sea Region of Turkey. Grasas y aceites, 61(1), 86-94.
  • Çol Ayvaz, M. (2015). Antioxidant activity of Trachystemon orientalis (L.) G. Don (Borage) grown and eaten as food in Ordu, Turkey. Herba Polonica, 61(4).
  • Sacan, O. (2018). Antioxidant Activity, Total Phenol and Total Flavonoid Contents of Trachystemon orientalis (L.) G. Don. European Journal of Biology, 77(2), 70-75.
  • Ayhan, B. S., Yalçın, E., Çavuşoğlu, K., & Acar, A. (2019). Antidiabetic potential and multi-biological activities of Trachystemon orientalis extracts. Journal of Food Measurement and Characterization, 13(4), 2887-2893.
  • Clarke, G., Ting, K. N., Wiart, C., & Fry, J. (2013). High correlation of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants, 2(1), 1-10.
  • Yang, Y. C., Lii, C. K., Lin, A. H., Yeh, Y. W., Yao, H. T., Li, C. C., ... & Chen, H. W. (2011). Induction of glutathione synthesis and heme oxygenase 1 by the flavonoids butein and phloretin is mediated through the ERK/Nrf2 pathway and protects against oxidative stress. Free Radical Biology and Medicine, 51(11), 2073-2081.
  • Mansur, J. D. S., Breder, M. N. R., Mansur, M. C. D. A., & Azulay, R. D. (1986). Determinaçäo do fator de proteçäo solar por espectrofotometria. An. Bras. Dermatol, 121-4.
  • Chiari, M. E., Joray, M. B., Ruiz, G., Palacios, S. M., & Carpinella, M. C. (2010). Tyrosinase inhibitory activity of native plants from central Argentina: Isolation of an active principle from Lithrea molleoides. Food chemistry, 120(1), 10-14.
  • Van Wart, H. E., & Steinbrink, D. R. (1981). A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Analytical biochemistry, 113(2), 356-365.
  • Kusumawati, I., & Indrayanto, G. (2013). Natural antioxidants in cosmetics. In Studies in natural products chemistry (Vol. 40, pp. 485-505). Elsevier.
  • Sun Protection Factor (SPF). Center for Drug Evaluation and Research. Food and Drug Administration https://www.fda.gov/about-fda/center-drug-evaluation-and-research-cder/sun-protection-factor-spf Date accessed: October 21, 2021
  • Ratnasooriya, W. D., Pathirana, R. N., Dissanayake, A. S., Samanmali, B. L. C., & Desman, P. K. (2016). Evaluation of invitro sun screen activities of salt marshy plants Suaeda monoica, Suaeda maritima and Halosarcia indica. International Journal of Pharmaceutical Research & Allied Sciences, 5(2).
  • Khazaeli, P., & Mehrabani, M. (2010). Screening of sun protective activity of the ethyl acetate extracts of some medicinal plants. Iranian Journal of Pharmaceutical Research, (1), 5-9.
  • Yasmeen, S. H. A. G. U. F. T. A., & Gupta, P. R. O. M. I. L. A. (2016). In vitro demonstration of Dalbergia sissoo (Indian rosewood) methanolic extracts as potential agents for sunscreening and DNA nick prevention. Int J Pharm Pharm Sci, 8(6), 175-81.
  • Saidi, I., Nimbarte, V. D., Schwalbe, H., Waffo-Téguo, P., Harrath, A. H., Mansour, L., ... & Jannet, H. B. (2020). Anti-tyrosinase, anti-cholinesterase and cytotoxic activities of extracts and phytochemicals from the Tunisian Citharexylum spinosum L.: Molecular docking and SAR analysis. Bioorganic Chemistry, 102, 104093.
  • Chatatikun, M., Supjaroen, P., Promlat, P., Chantarangkul, C., Waranuntakul, S., Nawarat, J., & Tangpong, J. (2020). Antioxidant and Tyrosinase Inhibitory Properties of an Aqueous Extract of Garcinia atroviridis Griff. ex. T. Anderson Fruit Pericarps. Pharmacognosy Journal, 12(1).
  • Bakhouche, I., Aliat, T., Boubellouta, T., Gali, L., Şen, A., & Bellik, Y. (2021). Phenolic contents and in vitro antioxidant, anti-tyrosinase, and anti-inflammatory effects of leaves and roots extracts of the halophyte Limonium delicatulum. South African Journal of Botany, 139, 42-49.
  • Chelly, S., Chelly, M., Occhiuto, C., Cimino, F., Cristani, M., Saija, A., ... & Antonio, S. (2021). Evaluation of antioxidant, antinflammatory and antityrosinase potential of extracts from different aerial parts of Rhanterium suaveolens from Tunisia. Chemistry & Biodiversity.
  • Mukherjee, P. K., Biswas, R., Sharma, A., Banerjee, S., Biswas, S., & Katiyar, C. K. (2018). Validation of medicinal herbs for anti-tyrosinase potential. Journal of herbal medicine, 14, 1-16.
  • Ilhan, M., Zengin, G., Küpeli Akkol, E., Aktümsek, A., & Süntar, I. (2016). The importance of Asphodeline species on enzyme inhibition: anti-elastase, anti-hyaluronidase and anti-collagenase potential. Turk. J. Pharm. Sci, 13, 323-327.
  • Kim, S. Y., Go, K. C., Song, Y. S., Jeong, Y. S., Kim, E. J., & Kim, B. J. (2014). Extract of the mycelium of T. matsutake inhibits elastase activity and TPA-induced MMP-1 expression in human fibroblasts. International journal of molecular medicine, 34(6), 1613-1621.
  • Chiocchio, I., Mandrone, M., Sanna, C., Maxia, A., Tacchini, M., & Poli, F. J. I. C. (2018). Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Industrial crops and products, 122, 498-505.
  • Gangadharan, A. (2021). Free radical scavenging and elastase inhibitory activity of different extracts of Leucas aspera (Willd.) Link-An in vitro study. Indian Journal of Natural Products and Resources (IJNPR)[Formerly Natural Product Radiance (NPR)], 12(1), 61-67.
  • Uzun, E., Sariyar, G., Adsersen, A., Karakoc, B., Ötük, G., Oktayoglu, E., & Pirildar, S. (2004). Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species. Journal of ethnopharmacology, 95(2-3), 287-296.
There are 47 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Gamze Kurtuluş 0000-0002-4053-9292

Orçun Toksöz 0000-0002-4863-3232

Cenk Sesal 0000-0002-0737-0122

Publication Date March 30, 2022
Published in Issue Year 2022 Volume: 34 Issue: 1

Cite

APA Kurtuluş, G., Toksöz, O., & Sesal, C. (2022). Potential Application of Trachystemon orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients. International Journal of Advances in Engineering and Pure Sciences, 34(1), 147-156. https://doi.org/10.7240/jeps.1056274
AMA Kurtuluş G, Toksöz O, Sesal C. Potential Application of Trachystemon orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients. JEPS. March 2022;34(1):147-156. doi:10.7240/jeps.1056274
Chicago Kurtuluş, Gamze, Orçun Toksöz, and Cenk Sesal. “Potential Application of Trachystemon Orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients”. International Journal of Advances in Engineering and Pure Sciences 34, no. 1 (March 2022): 147-56. https://doi.org/10.7240/jeps.1056274.
EndNote Kurtuluş G, Toksöz O, Sesal C (March 1, 2022) Potential Application of Trachystemon orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients. International Journal of Advances in Engineering and Pure Sciences 34 1 147–156.
IEEE G. Kurtuluş, O. Toksöz, and C. Sesal, “Potential Application of Trachystemon orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients”, JEPS, vol. 34, no. 1, pp. 147–156, 2022, doi: 10.7240/jeps.1056274.
ISNAD Kurtuluş, Gamze et al. “Potential Application of Trachystemon Orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients”. International Journal of Advances in Engineering and Pure Sciences 34/1 (March 2022), 147-156. https://doi.org/10.7240/jeps.1056274.
JAMA Kurtuluş G, Toksöz O, Sesal C. Potential Application of Trachystemon orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients. JEPS. 2022;34:147–156.
MLA Kurtuluş, Gamze et al. “Potential Application of Trachystemon Orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients”. International Journal of Advances in Engineering and Pure Sciences, vol. 34, no. 1, 2022, pp. 147-56, doi:10.7240/jeps.1056274.
Vancouver Kurtuluş G, Toksöz O, Sesal C. Potential Application of Trachystemon orientalis L. Extracts in the Cosmetic Industries: Skincare, Photoprotective and Antiaging Ingredients. JEPS. 2022;34(1):147-56.