Research Article
BibTex RIS Cite

Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama

Year 2022, Volume: 34 Issue: 4, 479 - 488, 31.12.2022
https://doi.org/10.7240/jeps.1050972

Abstract

Dağılım sınıfları günümüzde uygulamalı bilimlerde sıkça kullanılmaktadır. Dağılım sınıflarının kendilerine özgü bazı özellikleri olduğundan her ailenin farklı kullanım alanları oluşmuştur. Örneğin dört parametreli genelleştirilmiş gamma dağılımının bozulma oranı fonksiyonu monoton azalmayan ve modeli monoton olduğundan dağılım yaşam süresi verileri ve güvenilirlik analizinde oldukça yaygın kullanılmaktadır. Söz konusu kullanım alanların sürekli olarak genişlemesi ve yeni ihtiyaçların ortaya çıkmasıyla ayrıca mevcut dağılım aileleriyle çalışmanın bazı durumlarda çalışmayı zorlaştırdığı ve bazı dezavantajlara sahip olduğu için fazla problemle karşılaşılmaktadır. Bu nedenle literature sürekli olarak farklı istatistiksel özelliklere sahip yeni dağılım sınıfları kazandırılmaktadır. Bu çalışmada da literatüre kazandırılan yeni dağılım sınıfından biri olarak üstelleştirilmiş genelleştirilmiş dağılım ailesi üzerinde durulacaktır. Özel olarak Üstelleştirilmiş genelleştirilmiş gamma dağılımının özelliklerinden, kullanım alanlarından, diğer dağılımlara göre avantajlarından bahsedilecektir. Son olarak gerçek bir veri seti ile çalışmada kullanılacak dağılım test edilip dağılımın parametreleri en çok olabilirlik yöntemi aracılığıyla tahmin edilecektir.

References

  • [1] Gupta, R.D. ve Kundu, D. (1999). Generalized exponential distributions. Australian and New Zealand Journal of Statistics 41(2), 173-188.
  • [2] Gupta, R. D. ve Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma and Weibull. Biometrical Journal 43(1), 117-130.
  • [3] Nadarajah, S. ve Kotz, S. (2006). The exponentiated type distributions. Acta Applicandae Mathematicae 92(2), 97-111.
  • [4] Eugene, N., Lee, C. ve Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics - Theory and Methods 31(4), 497-512.
  • [5] Cordeiro, G. M. ve Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), 883– 898.
  • [6] Cordeiro, G. M. ve Nadarajah, S. (2011). Closed-form expressions for moments of a class of beta generalized distributions. Brazilian Journal of Probability and Statistics 25(1), 14-33.
  • [7] Cordeiro, G.M., Ortega, E.M. ve Silva, G.O. (2011). The exponentiated generalized gamma distribution with application to lifetime data. Journal of statistical computation and simulation, 81(7), 827-842.
  • [8]Maguire, B.A. Pearson, E. ve Wynn, A. (1952). The time intervals between industrial accidents. Biometrika, pages 168–180.
  • [9] Dubey, S.D. (1970). Compound gamma, beta and F distributions. Metrika, 16(1), 27–31.
  • [10]Zografos, K. ve Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference. Statistical Methodology, 6(4), 344–362.
  • [11]Alzaatreh, A., Lee, C. ve Famoye, F. (2013). A new method for generating families of continuous distributions. METRON, 71(1), 63–79.
  • [12] Alzaghal, A., Famoye, F. ve Lee, C. 2013. Exponentiated T-X Family of Distributions with Some Applications. International Journal of Statistics and Probability, 2(3), 31–49.
  • [13]Marshall, A. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–652.
  • [14]Chahkandi, M. ve Ganjali, M. (2009). On some lifetime distributions with decreasing failure rate. Computational Statistics & Data Analysis, 53(12), 4433–4440.
  • [15]Lindley, D. V. (1958). Fiducial Distributions and Bayes’ Theorem. Journal of the Royal Statistical Society: Series B (Methodological), 20, 102–107.

A New Application in the Exponentiated Generalized Gamma Distribution

Year 2022, Volume: 34 Issue: 4, 479 - 488, 31.12.2022
https://doi.org/10.7240/jeps.1050972

Abstract

Distribution classes are frequently used in applied sciences today. Since distribution classes have some unique features, each family has different usage areas. For example, since the distortion rate function of the four-parameter generalized gamma distribution is not monotonously decreasing and the model is monotonous, the distribution is widely used in lifetime data and reliability analysis. With the continuous expansion of the said usage areas and the emergence of new needs, more problems are encountered because working with existing distribution families makes it difficult to work in some cases and has some disadvantages. For this reason, new distribution classes with different statistical properties are constantly being introduced to the literature. In this study, the exponentiated generalized distribution family, as one of the new distribution classes that are introduced to the literature, will be emphasized. In particular, the properties of the exponentiated generalized gamma distribution, its usage areas, and its advantages over other distributions are mentioned. Finally, the distribution is used in the study with a real data set is tested as well the parameters of the distribution are estimated using the maximum likelihood method

References

  • [1] Gupta, R.D. ve Kundu, D. (1999). Generalized exponential distributions. Australian and New Zealand Journal of Statistics 41(2), 173-188.
  • [2] Gupta, R. D. ve Kundu, D. (2001). Exponentiated exponential family: an alternative to gamma and Weibull. Biometrical Journal 43(1), 117-130.
  • [3] Nadarajah, S. ve Kotz, S. (2006). The exponentiated type distributions. Acta Applicandae Mathematicae 92(2), 97-111.
  • [4] Eugene, N., Lee, C. ve Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics - Theory and Methods 31(4), 497-512.
  • [5] Cordeiro, G. M. ve Castro, M. (2011). A new family of generalized distributions. Journal of Statistical Computation and Simulation, 81(7), 883– 898.
  • [6] Cordeiro, G. M. ve Nadarajah, S. (2011). Closed-form expressions for moments of a class of beta generalized distributions. Brazilian Journal of Probability and Statistics 25(1), 14-33.
  • [7] Cordeiro, G.M., Ortega, E.M. ve Silva, G.O. (2011). The exponentiated generalized gamma distribution with application to lifetime data. Journal of statistical computation and simulation, 81(7), 827-842.
  • [8]Maguire, B.A. Pearson, E. ve Wynn, A. (1952). The time intervals between industrial accidents. Biometrika, pages 168–180.
  • [9] Dubey, S.D. (1970). Compound gamma, beta and F distributions. Metrika, 16(1), 27–31.
  • [10]Zografos, K. ve Balakrishnan, N. (2009). On families of beta- and generalized gamma-generated distributions and associated inference. Statistical Methodology, 6(4), 344–362.
  • [11]Alzaatreh, A., Lee, C. ve Famoye, F. (2013). A new method for generating families of continuous distributions. METRON, 71(1), 63–79.
  • [12] Alzaghal, A., Famoye, F. ve Lee, C. 2013. Exponentiated T-X Family of Distributions with Some Applications. International Journal of Statistics and Probability, 2(3), 31–49.
  • [13]Marshall, A. (1997). A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika, 84(3), 641–652.
  • [14]Chahkandi, M. ve Ganjali, M. (2009). On some lifetime distributions with decreasing failure rate. Computational Statistics & Data Analysis, 53(12), 4433–4440.
  • [15]Lindley, D. V. (1958). Fiducial Distributions and Bayes’ Theorem. Journal of the Royal Statistical Society: Series B (Methodological), 20, 102–107.
There are 15 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Ceren Ünal 0000-0002-9357-1771

Gamze Özel 0000-0003-3886-3074

Early Pub Date December 23, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Volume: 34 Issue: 4

Cite

APA Ünal, C., & Özel, G. (2022). Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama. International Journal of Advances in Engineering and Pure Sciences, 34(4), 479-488. https://doi.org/10.7240/jeps.1050972
AMA Ünal C, Özel G. Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama. JEPS. December 2022;34(4):479-488. doi:10.7240/jeps.1050972
Chicago Ünal, Ceren, and Gamze Özel. “Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama”. International Journal of Advances in Engineering and Pure Sciences 34, no. 4 (December 2022): 479-88. https://doi.org/10.7240/jeps.1050972.
EndNote Ünal C, Özel G (December 1, 2022) Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama. International Journal of Advances in Engineering and Pure Sciences 34 4 479–488.
IEEE C. Ünal and G. Özel, “Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama”, JEPS, vol. 34, no. 4, pp. 479–488, 2022, doi: 10.7240/jeps.1050972.
ISNAD Ünal, Ceren - Özel, Gamze. “Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama”. International Journal of Advances in Engineering and Pure Sciences 34/4 (December 2022), 479-488. https://doi.org/10.7240/jeps.1050972.
JAMA Ünal C, Özel G. Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama. JEPS. 2022;34:479–488.
MLA Ünal, Ceren and Gamze Özel. “Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama”. International Journal of Advances in Engineering and Pure Sciences, vol. 34, no. 4, 2022, pp. 479-88, doi:10.7240/jeps.1050972.
Vancouver Ünal C, Özel G. Üstelleştirilmiş Genelleştirilmiş Gamma Dağılımında Yeni Bir Uygulama. JEPS. 2022;34(4):479-88.