Research Article
BibTex RIS Cite

Elektrikli Araçlarda Hava Giriş Konumu ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması

Year 2023, Volume: 35 Issue: 1, 116 - 124, 30.03.2023
https://doi.org/10.7240/jeps.1239910

Abstract

Bu çalışmada, hava giriş konumu ve hızının, hesaplamalı akışkanlar dinamiği (HAD) simülasyonları kullanılarak elektrikli araçlarda (EA'lar) nikel-metal hidrür (Ni-MH) batarya paketinin soğutma performansı üzerindeki etkisi incelenmiştir. EA'lara olan talebin artması, araçların güvenliğini sağlamak için gelişmiş batarya soğutma performansına ihtiyaç duyulmasına neden olmuştur. Ni-MH batarya takımının soğutma performansı, batarya takımının 0 ila 60 mm arasında değişen giriş konumları ve sabit çıkış konumu ile hem U hem de Z kanalı geometrilerinde analiz edilmiştir. Hava giriş hızları 2 ila 6 m/s arasında değişmektedir. Sonuçlar, hava giriş konumu arttıkça sıcaklık değerlerinin düştüğünü, ancak 30 mm'lik giriş konumundan sonra düşüşün önemsiz hale geldiğini göstermektedir. Bu, hava akışını batarya takımını tamamen dolaştırmaya ve ısı transfer hızını artırmaya yönlendirmenin, hızı artırmaktan daha etkili olduğunu göstermektedir. En iyi soğutma performansının sırasıyla 316,86-327,75 K ve 316,27-317,46 K sıcaklık değerleri ile hem U hem de Z tipi kanallar için, 30 ve 60 mm giriş konumunda ve 6 m/s hızında olduğu bulunmuştur. Ek olarak, Z-tipi kanalın U-tipi kanaldan yaklaşık %6 daha fazla ısıyı dağıttığı görülmüştür. Çalışmanın sonuçları, EA’larda batarya ısıl yönetim sistemlerinin (BIYS) enerji verimliliğini artırmak için kullanılabilir. Havayı daha düşük hızlarda yönlendirerek, soğutma sisteminin enerji tüketimi azaltılabilir ve gerekli soğutma performansı korunabilir. Bu, sonuçta EA'ların menzilinin artmasına ve performansının gelişmesine yol açacaktır. Ek olarak, çalışma aynı zamanda EA’larda soğutma performansını optimize etmek ve araçların genel enerji verimliliğini artırmak için kullanılabilecek batarya paketi düzeninin tasarımı hakkında da fikir vermektedir.

References

  • [1] Xie, J., Ge, Z., Zang, M., & Wang, S., Structural optimization of lithium-ion battery pack with forced air-cooling system. Applied Thermal Engineering, 126, 583–593. (2017).
  • [2] Gupta, A. & Kumar, H., Multi-dimensional perspectives on electric vehicles design: A mind map approach. Cleaner Engineering & Technology, 8 100483. (2022).
  • [3] Chen, K., Chen, Y., Li, Z., Yuan, F., & Wang, S., Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system. International Journal of Heat and Mass Transfer, 127, 393–401. (2018).
  • [4] Cengiz, M., Oh, H., & Lee, S.-H., Lithium Dendrite Growth Suppression and Ionic Conductivity of Li2S-P2S5 -P2O5 Glass Solid Electrolytes Prepared by Mechanical Milling. Journal of The Electrochemical Society, 166 (16), A3997–A4004. (2019).
  • [5] Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288. (2013).
  • [6] Kim, Y.T. & Han, S.Y., Cooling channel designs of a prismatic battery pack for electric vehicle using the deep Q-network algorithm. Applied Thermal Engineering, 219, 119610. (2023).
  • [7] Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C., Thermal runaway caused fire and explosion of lithium-ion battery. Journal of Power Sources, 208, 210–224. (2012).
  • [8] Rao, Z. & Wang, S., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15 (9), 4554–4571. (2011)
  • [9] Wang, Y.F. ve Wu, J.T., Performance improvement of thermal management system of lithium-ion battery module on purely electric AUVs. Applied Thermal Engineering, 146, 74–84. (2019).
  • [10] Xu, Z., Yu, G., Zhang, T., & Wang, R., Cooling performance of battery pack as affected by inlet position and inlet air velocity in electric vehicle. Case Studies in Thermal Engineering, 39, 102382. (2022).
  • [11] Xu, X.M. & He, R., Research on the heat dissipation performance of battery pack based on forced air cooling. Journal of Power Sources, 240, 33–41. (2013).
  • [12] Mahamud, R. & Park, C., Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685–5696. (2011).
  • [13] Tran, T.H., Harmand, S., & Sahut, B., Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery. Journal of Power Sources, 265, 262–272. (2014).
  • [14] Li, X., He, F., & Ma, L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation. Journal of Power Sources, 238, 395–402. (2013).
  • [15] Jiaqiang, E., Yue, M., Chen, J., Zhu, H., Deng, Y., Zhu, Y., et al., Effects of the different air-cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering, 144, 231–241. (2018).
  • [16] Sefidan, A.M., Sojoudi, A., & Saha, S.C., Nanofluid-based cooling of cylindrical lithium-ion battery packs employing forced air flow. International Journal of Thermal Sciences, 117, 44–58. (2017).
  • [17] Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M.A., et al., A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280. (2020).
  • [18] Hong, S., Zhang, X., Chen, K., & Wang, S., Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer, 116, 1204–1212. (2018).
  • [19] Shen, X., Cai, T., He, C., Yang, Y., & Chen, M., Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles. Journal of Energy Storage, 58, 106356. (2023).
  • [20] Park, H., A design of air flow configuration for cooling lithium-ion battery in hybrid electric vehicles. Journal of Power Sources, 239 30–36. (2013)
  • [21] Xun, J., Liu, R., & Jiao, K., Numerical and analytical modeling of lithium-ion battery thermal behaviors with different cooling designs. Journal of Power Sources, 233 47–61. (2013).
  • [22] Yang, N., Zhang, X., Li, G., & Hua, D., Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Applied Thermal Engineering, 80 55–65. (2015).
  • [23] Li, M., Liu, Y., Wang, X., & Zhang, J., Modeling and optimization of an enhanced battery thermal management system in electric vehicles. Front. Mech. Eng, 14(1), 65–75. (2019).
  • [24] Liu, Y. & Zhang, J., Design a J-type air-based battery thermal management system through surrogate-based optimization. Applied Energy, 252, 113426. (2019).
  • [25] Calzolari, G. & Liu, W., Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review. Building and Environment, 206, 108315. (2021).
  • [26] Şener, R. Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a CI Engine. International Journal of Advances in Engineering and Pure Sciences, 33 (2), 299–307. (2021). [27] Sahbaz, M., Kentli, A., & Koten, H., Thermal Analysis and Optimization of High Power Led Armature. Thermal Science, 23 (2A), 637–646. (2019).
  • [28] Zhang, J., Wu, X., Chen, K., Zhou, D., & Song, M. Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems. Journal of Power Sources, 490, 229539. (2021).
  • [29] Sato, N. & Yagi, K., Thermal behavior analysis of nickel metal hydride batteries for electric vehicles. JSAE Review, 21(2), 205–211, (2000).
  • [30] Araki, T., Nakayama, M., Fukuda, K., & Onda, K., Thermal Behavior of Small Nickel/Metal Hydride Battery during Rapid Charge and Discharge Cycles. Journal of The Electrochemical Society, 152(6), A1128, (2005).
  • [31] Xu, Z., Heat transfer performance of the rectangular heat sinks with non-uniform height thermosyphons for high power LED lamps cooling. Case Studies in Thermal Engineering, 25, 101013. (2021).

Investigation of the Effect of Air Inlet Position and Velocity on Battery Cooling Performance in Electric Vehicles

Year 2023, Volume: 35 Issue: 1, 116 - 124, 30.03.2023
https://doi.org/10.7240/jeps.1239910

Abstract

This study examines the effect of air inlet location and velocity on the cooling performance of a nickel-metal hydride (Ni-MH) battery pack in electric vehicles (EVs) using computational fluid dynamics (CFD) simulations. The increasing demand for EVs has led to a need for improved battery cooling performance in order to ensure the safety of the vehicles. The cooling performance of the Ni-MH battery pack was analyzed in both U- and Z-channel geometries, with varying input positions of the battery pack from 0 to 60 mm and constant output positions. The air intake velocities were also varied between 2 and 6 m/s. The results show that as the air intake position increases, the temperature values decrease, but the decrease becomes insignificant after the 30 mm position. This suggests that directing the air flow to fully circulate the battery pack and increase the heat transfer rate is more effective than increasing the velocity. The best cooling performance was found to be at 30- and 60-mm inlet position and 6 m/s velocity for both U- and Z-type channels, with temperature values of 316.86-327.75 K and 316.27-317.46 K respectively. Additionally, the Z-type channel was found to dissipate approximately 6% more heat than the U-type channel. The study's results can be used to improve the energy efficiency of battery thermal management systems (BTMS) in EVs. By directing the air at lower velocities, the energy consumption of the cooling system can be reduced while still maintaining the required cooling performance. This will ultimately lead to the extended range and improved performance of EVs. Additionally, the study also provides insight into the design of the battery pack layout in EVs, which can be used to optimize the cooling performance and improve the overall energy efficiency of the vehicles.

References

  • [1] Xie, J., Ge, Z., Zang, M., & Wang, S., Structural optimization of lithium-ion battery pack with forced air-cooling system. Applied Thermal Engineering, 126, 583–593. (2017).
  • [2] Gupta, A. & Kumar, H., Multi-dimensional perspectives on electric vehicles design: A mind map approach. Cleaner Engineering & Technology, 8 100483. (2022).
  • [3] Chen, K., Chen, Y., Li, Z., Yuan, F., & Wang, S., Design of the cell spacings of battery pack in parallel air-cooled battery thermal management system. International Journal of Heat and Mass Transfer, 127, 393–401. (2018).
  • [4] Cengiz, M., Oh, H., & Lee, S.-H., Lithium Dendrite Growth Suppression and Ionic Conductivity of Li2S-P2S5 -P2O5 Glass Solid Electrolytes Prepared by Mechanical Milling. Journal of The Electrochemical Society, 166 (16), A3997–A4004. (2019).
  • [5] Lu, L., Han, X., Li, J., Hua, J., & Ouyang, M., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 226, 272–288. (2013).
  • [6] Kim, Y.T. & Han, S.Y., Cooling channel designs of a prismatic battery pack for electric vehicle using the deep Q-network algorithm. Applied Thermal Engineering, 219, 119610. (2023).
  • [7] Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., & Chen, C., Thermal runaway caused fire and explosion of lithium-ion battery. Journal of Power Sources, 208, 210–224. (2012).
  • [8] Rao, Z. & Wang, S., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 15 (9), 4554–4571. (2011)
  • [9] Wang, Y.F. ve Wu, J.T., Performance improvement of thermal management system of lithium-ion battery module on purely electric AUVs. Applied Thermal Engineering, 146, 74–84. (2019).
  • [10] Xu, Z., Yu, G., Zhang, T., & Wang, R., Cooling performance of battery pack as affected by inlet position and inlet air velocity in electric vehicle. Case Studies in Thermal Engineering, 39, 102382. (2022).
  • [11] Xu, X.M. & He, R., Research on the heat dissipation performance of battery pack based on forced air cooling. Journal of Power Sources, 240, 33–41. (2013).
  • [12] Mahamud, R. & Park, C., Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 196(13), 5685–5696. (2011).
  • [13] Tran, T.H., Harmand, S., & Sahut, B., Experimental investigation on heat pipe cooling for Hybrid Electric Vehicle and Electric Vehicle lithium-ion battery. Journal of Power Sources, 265, 262–272. (2014).
  • [14] Li, X., He, F., & Ma, L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation. Journal of Power Sources, 238, 395–402. (2013).
  • [15] Jiaqiang, E., Yue, M., Chen, J., Zhu, H., Deng, Y., Zhu, Y., et al., Effects of the different air-cooling strategies on cooling performance of a lithium-ion battery module with baffle. Applied Thermal Engineering, 144, 231–241. (2018).
  • [16] Sefidan, A.M., Sojoudi, A., & Saha, S.C., Nanofluid-based cooling of cylindrical lithium-ion battery packs employing forced air flow. International Journal of Thermal Sciences, 117, 44–58. (2017).
  • [17] Behi, H., Karimi, D., Behi, M., Ghanbarpour, M., Jaguemont, J., Sokkeh, M.A., et al., A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles. Applied Thermal Engineering, 174, 115280. (2020).
  • [18] Hong, S., Zhang, X., Chen, K., & Wang, S., Design of flow configuration for parallel air-cooled battery thermal management system with secondary vent. International Journal of Heat and Mass Transfer, 116, 1204–1212. (2018).
  • [19] Shen, X., Cai, T., He, C., Yang, Y., & Chen, M., Thermal analysis of modified Z-shaped air-cooled battery thermal management system for electric vehicles. Journal of Energy Storage, 58, 106356. (2023).
  • [20] Park, H., A design of air flow configuration for cooling lithium-ion battery in hybrid electric vehicles. Journal of Power Sources, 239 30–36. (2013)
  • [21] Xun, J., Liu, R., & Jiao, K., Numerical and analytical modeling of lithium-ion battery thermal behaviors with different cooling designs. Journal of Power Sources, 233 47–61. (2013).
  • [22] Yang, N., Zhang, X., Li, G., & Hua, D., Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements. Applied Thermal Engineering, 80 55–65. (2015).
  • [23] Li, M., Liu, Y., Wang, X., & Zhang, J., Modeling and optimization of an enhanced battery thermal management system in electric vehicles. Front. Mech. Eng, 14(1), 65–75. (2019).
  • [24] Liu, Y. & Zhang, J., Design a J-type air-based battery thermal management system through surrogate-based optimization. Applied Energy, 252, 113426. (2019).
  • [25] Calzolari, G. & Liu, W., Deep learning to replace, improve, or aid CFD analysis in built environment applications: A review. Building and Environment, 206, 108315. (2021).
  • [26] Şener, R. Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a CI Engine. International Journal of Advances in Engineering and Pure Sciences, 33 (2), 299–307. (2021). [27] Sahbaz, M., Kentli, A., & Koten, H., Thermal Analysis and Optimization of High Power Led Armature. Thermal Science, 23 (2A), 637–646. (2019).
  • [28] Zhang, J., Wu, X., Chen, K., Zhou, D., & Song, M. Experimental and numerical studies on an efficient transient heat transfer model for air-cooled battery thermal management systems. Journal of Power Sources, 490, 229539. (2021).
  • [29] Sato, N. & Yagi, K., Thermal behavior analysis of nickel metal hydride batteries for electric vehicles. JSAE Review, 21(2), 205–211, (2000).
  • [30] Araki, T., Nakayama, M., Fukuda, K., & Onda, K., Thermal Behavior of Small Nickel/Metal Hydride Battery during Rapid Charge and Discharge Cycles. Journal of The Electrochemical Society, 152(6), A1128, (2005).
  • [31] Xu, Z., Heat transfer performance of the rectangular heat sinks with non-uniform height thermosyphons for high power LED lamps cooling. Case Studies in Thermal Engineering, 25, 101013. (2021).
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Hasan Uzal 0000-0002-4882-6843

Ramazan Şener 0000-0001-6108-8673

Hasan Oktay 0000-0002-0917-7844

Early Pub Date March 29, 2023
Publication Date March 30, 2023
Published in Issue Year 2023 Volume: 35 Issue: 1

Cite

APA Uzal, H., Şener, R., & Oktay, H. (2023). Elektrikli Araçlarda Hava Giriş Konumu ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması. International Journal of Advances in Engineering and Pure Sciences, 35(1), 116-124. https://doi.org/10.7240/jeps.1239910
AMA Uzal H, Şener R, Oktay H. Elektrikli Araçlarda Hava Giriş Konumu ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması. JEPS. March 2023;35(1):116-124. doi:10.7240/jeps.1239910
Chicago Uzal, Hasan, Ramazan Şener, and Hasan Oktay. “Elektrikli Araçlarda Hava Giriş Konumu Ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences 35, no. 1 (March 2023): 116-24. https://doi.org/10.7240/jeps.1239910.
EndNote Uzal H, Şener R, Oktay H (March 1, 2023) Elektrikli Araçlarda Hava Giriş Konumu ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması. International Journal of Advances in Engineering and Pure Sciences 35 1 116–124.
IEEE H. Uzal, R. Şener, and H. Oktay, “Elektrikli Araçlarda Hava Giriş Konumu ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması”, JEPS, vol. 35, no. 1, pp. 116–124, 2023, doi: 10.7240/jeps.1239910.
ISNAD Uzal, Hasan et al. “Elektrikli Araçlarda Hava Giriş Konumu Ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences 35/1 (March 2023), 116-124. https://doi.org/10.7240/jeps.1239910.
JAMA Uzal H, Şener R, Oktay H. Elektrikli Araçlarda Hava Giriş Konumu ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması. JEPS. 2023;35:116–124.
MLA Uzal, Hasan et al. “Elektrikli Araçlarda Hava Giriş Konumu Ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması”. International Journal of Advances in Engineering and Pure Sciences, vol. 35, no. 1, 2023, pp. 116-24, doi:10.7240/jeps.1239910.
Vancouver Uzal H, Şener R, Oktay H. Elektrikli Araçlarda Hava Giriş Konumu ve Hızının Batarya Soğutma Performansına Etkisinin Araştırılması. JEPS. 2023;35(1):116-24.