Research Article
BibTex RIS Cite
Year 2019, Volume: 3 Issue: 2, 51 - 66, 30.06.2019
https://doi.org/10.30521/jes.554900

Abstract

References

  • Beeby, S: P., O’Donnell, T. Electromagnetic Energy Harvesting, In Energy Harvesting Technologies (Editors: S. Priya, D.J. Inman), Springer, USA, 129 (2009).
  • Uzun, Y., Kurt, E., Kurt, H.H., Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum, Sensors and Actuators A: Physical, 224, 119 (2015).
  • Uzun, Y., Kurt, E., The effect of periodic magnetic force on a piezoelectric energy harvester, Sensors and Actuators A: Physical, 192, 58 (2013).
  • Bizon, N., Tabatabaei, N.M., Blaabjerg, F., Kurt, E., Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications, Springer, Switzerland, 107 (2017).
  • Kurt, E., Gor, H., Doner,U., Electromagnetic design of a new axial and radial flux generator with the rotor back-irons, International Journal of Hydrogen Energy, 41(17), 7019 (2016).
  • Arslan, S., Kurt, E., Akizu, O., Lopez-Guede, J.M., Design optimization study of a torus type axial flux machine. Journal of Energy Systems , 2(2): 43-56, (2018), DOI: 10.30521/jes. 408179
  • Celik, K., Kurt, E., Uzun, Y., Experimental and theoretical explorations on the buckling piezoelectric layer under magnetic excitation, Journal of Electronic Materials, 46(7), 4003 (2017).
  • Kurt, E., Cottone, F., Uzun, Y., Orfei, F., Mattarelli, F., Özhan, D., Design and implementation of a new contactless triple piezoelectrics wind energy harvester, Int. J. Hydrogen Energy, 42(28), 17813 (2017).
  • Spreemann, D., Manoli, Y., Electromagnetic vibration energy harvesting devices: Architectures, design, modeling and optimization (Vol. 35). Springer Science & Business Media (2012).
  • Amirtharajah, R., Chandrakasan, A.P., Self-powered signal processing using vibration-based power generation, IEEE Journal of Solid-State Circuits, 33(5), 687 (1998).
  • El-Hami, M. , Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D., Ross, J.N., Design and fabrication of a new vibration-based electromechanical power generator”, Sensors and Actuators A: Physical, 92(1), 335 (2001).
  • Glynne-Jones, P. , Tudor, M.J., Beeby, S.P., White, N.M., An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical, 110(1), 344 (2004).
  • Beeby, S.P., Tudor, M.J., White, N.M. Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17, R175 (2006).
  • Torah, R.N., Glynne-Jones, P., Tudor, M.J., Beeby, S.P. Energy aware wireless microsystem powered by vibration energy system, Pro. 7th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2007), Freiburg, Germany, 323, 28-29 Nov. (2007).
  • Von Büren, T., Tröster, G., Design and optimization of a linear vibration-driven electromagnetic micro-power generator, Sensors and Actuators A: Physical, 135(2), 765 (2007).
  • Yuen, S.C., Lee, J.M., Li, W.J., Leong, P.H. An AA-Sized Vibration-Based Microgenerator for Wireless Sensors, IEEE Pervasive Computing, 6(1), 64 (2007).
  • Hadas, Z., Kurfurst, J., Ondrusek, C., Singule, V., Artificial intelligence based optimisation for vibration energy harvesting applications, Microsystem Technologies, 1–12, (2012), DOI: 10.1007/s00542-012-1432-1
  • Kurt, E., Kale, M.M., Akbaba, S., Bizon, N., Analytical and experimental studies on a new linear energy harvester, Canadian J. Physics, 2018, https://doi.org/10.1139/cjp-2017-0708.
  • Hendijanizadeh, M., Sharkh, S.M., Elliott, S.J., Moshrefi-Torbati, M. Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion, Smart Materials and Structures, 22:125009 (2013).

Design and fabrication of a new micro-power scaled electromagnetic harvester

Year 2019, Volume: 3 Issue: 2, 51 - 66, 30.06.2019
https://doi.org/10.30521/jes.554900

Abstract

In the present study,
a new micro-power scaled electromagnetic (EM) harvester is designed and fabricated.
The device has an innovative magnetic flux varying mechanism with two
cylindrical Nb magnets and a central core moving inside the magnets back and
forth. The system harvest electricity from the linear oscillations by the help
of a spring attached at the bottom part of the core. The device requires only
one spring and a second linear-laminated core closes the flux outside of the
magnets in order to lower the reluctance of the system. The device is 6 cm in
length and 2.4 cm in width in cylindrical geometry as a compact and stable
geometry. The experimental verifications have proven that it can generate up to
U = 7.76 mV output voltage depending
on the oscillation frequency. The maximal output power has been measured as P= 32
mW for 44 Hz frequency with the resistive load RL
= 0.2 Ohm. The power density p = 1.17
mW/cm3 has been obtained,
experimentally.

References

  • Beeby, S: P., O’Donnell, T. Electromagnetic Energy Harvesting, In Energy Harvesting Technologies (Editors: S. Priya, D.J. Inman), Springer, USA, 129 (2009).
  • Uzun, Y., Kurt, E., Kurt, H.H., Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum, Sensors and Actuators A: Physical, 224, 119 (2015).
  • Uzun, Y., Kurt, E., The effect of periodic magnetic force on a piezoelectric energy harvester, Sensors and Actuators A: Physical, 192, 58 (2013).
  • Bizon, N., Tabatabaei, N.M., Blaabjerg, F., Kurt, E., Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications, Springer, Switzerland, 107 (2017).
  • Kurt, E., Gor, H., Doner,U., Electromagnetic design of a new axial and radial flux generator with the rotor back-irons, International Journal of Hydrogen Energy, 41(17), 7019 (2016).
  • Arslan, S., Kurt, E., Akizu, O., Lopez-Guede, J.M., Design optimization study of a torus type axial flux machine. Journal of Energy Systems , 2(2): 43-56, (2018), DOI: 10.30521/jes. 408179
  • Celik, K., Kurt, E., Uzun, Y., Experimental and theoretical explorations on the buckling piezoelectric layer under magnetic excitation, Journal of Electronic Materials, 46(7), 4003 (2017).
  • Kurt, E., Cottone, F., Uzun, Y., Orfei, F., Mattarelli, F., Özhan, D., Design and implementation of a new contactless triple piezoelectrics wind energy harvester, Int. J. Hydrogen Energy, 42(28), 17813 (2017).
  • Spreemann, D., Manoli, Y., Electromagnetic vibration energy harvesting devices: Architectures, design, modeling and optimization (Vol. 35). Springer Science & Business Media (2012).
  • Amirtharajah, R., Chandrakasan, A.P., Self-powered signal processing using vibration-based power generation, IEEE Journal of Solid-State Circuits, 33(5), 687 (1998).
  • El-Hami, M. , Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D., Ross, J.N., Design and fabrication of a new vibration-based electromechanical power generator”, Sensors and Actuators A: Physical, 92(1), 335 (2001).
  • Glynne-Jones, P. , Tudor, M.J., Beeby, S.P., White, N.M., An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical, 110(1), 344 (2004).
  • Beeby, S.P., Tudor, M.J., White, N.M. Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17, R175 (2006).
  • Torah, R.N., Glynne-Jones, P., Tudor, M.J., Beeby, S.P. Energy aware wireless microsystem powered by vibration energy system, Pro. 7th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2007), Freiburg, Germany, 323, 28-29 Nov. (2007).
  • Von Büren, T., Tröster, G., Design and optimization of a linear vibration-driven electromagnetic micro-power generator, Sensors and Actuators A: Physical, 135(2), 765 (2007).
  • Yuen, S.C., Lee, J.M., Li, W.J., Leong, P.H. An AA-Sized Vibration-Based Microgenerator for Wireless Sensors, IEEE Pervasive Computing, 6(1), 64 (2007).
  • Hadas, Z., Kurfurst, J., Ondrusek, C., Singule, V., Artificial intelligence based optimisation for vibration energy harvesting applications, Microsystem Technologies, 1–12, (2012), DOI: 10.1007/s00542-012-1432-1
  • Kurt, E., Kale, M.M., Akbaba, S., Bizon, N., Analytical and experimental studies on a new linear energy harvester, Canadian J. Physics, 2018, https://doi.org/10.1139/cjp-2017-0708.
  • Hendijanizadeh, M., Sharkh, S.M., Elliott, S.J., Moshrefi-Torbati, M. Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion, Smart Materials and Structures, 22:125009 (2013).
There are 19 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Busra Mutlu This is me 0000-0003-2807-2164

Erol Kurt 0000-0002-3615-6926

Nicu Bizon 0000-0001-9311-7598

Jose Manuel Lopez Guede 0000-0002-5310-1601

Publication Date June 30, 2019
Acceptance Date May 5, 2019
Published in Issue Year 2019 Volume: 3 Issue: 2

Cite

Vancouver Mutlu B, Kurt E, Bizon N, Lopez Guede JM. Design and fabrication of a new micro-power scaled electromagnetic harvester. Journal of Energy Systems. 2019;3(2):51-66.

Journal of Energy Systems is the official journal of 

European Conference on Renewable Energy Systems (ECRES8756 and


Electrical and Computer Engineering Research Group (ECERG)  8753


Journal of Energy Systems is licensed under CC BY-NC 4.0