Year 2019,
Volume: 3 Issue: 2, 51 - 66, 30.06.2019
Busra Mutlu
Erol Kurt
,
Nicu Bizon
,
Jose Manuel Lopez Guede
References
- Beeby, S: P., O’Donnell, T. Electromagnetic Energy Harvesting, In Energy Harvesting Technologies (Editors: S. Priya, D.J. Inman), Springer, USA, 129 (2009).
- Uzun, Y., Kurt, E., Kurt, H.H., Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum, Sensors and Actuators A: Physical, 224, 119 (2015).
- Uzun, Y., Kurt, E., The effect of periodic magnetic force on a piezoelectric energy harvester, Sensors and Actuators A: Physical, 192, 58 (2013).
- Bizon, N., Tabatabaei, N.M., Blaabjerg, F., Kurt, E., Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications, Springer, Switzerland, 107 (2017).
- Kurt, E., Gor, H., Doner,U., Electromagnetic design of a new axial and radial flux generator with the rotor back-irons, International Journal of Hydrogen Energy, 41(17), 7019 (2016).
- Arslan, S., Kurt, E., Akizu, O., Lopez-Guede, J.M., Design optimization study of a torus type axial flux machine. Journal of Energy Systems , 2(2): 43-56, (2018), DOI: 10.30521/jes. 408179
- Celik, K., Kurt, E., Uzun, Y., Experimental and theoretical explorations on the buckling piezoelectric layer under magnetic excitation, Journal of Electronic Materials, 46(7), 4003 (2017).
- Kurt, E., Cottone, F., Uzun, Y., Orfei, F., Mattarelli, F., Özhan, D., Design and implementation of a new contactless triple piezoelectrics wind energy harvester, Int. J. Hydrogen Energy, 42(28), 17813 (2017).
- Spreemann, D., Manoli, Y., Electromagnetic vibration energy harvesting devices: Architectures, design, modeling and optimization (Vol. 35). Springer Science & Business Media (2012).
- Amirtharajah, R., Chandrakasan, A.P., Self-powered signal processing using vibration-based power generation, IEEE Journal of Solid-State Circuits, 33(5), 687 (1998).
- El-Hami, M. , Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D., Ross, J.N., Design and fabrication of a new vibration-based electromechanical power generator”, Sensors and Actuators A: Physical, 92(1), 335 (2001).
- Glynne-Jones, P. , Tudor, M.J., Beeby, S.P., White, N.M., An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical, 110(1), 344 (2004).
- Beeby, S.P., Tudor, M.J., White, N.M. Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17, R175 (2006).
- Torah, R.N., Glynne-Jones, P., Tudor, M.J., Beeby, S.P. Energy aware wireless microsystem powered by vibration energy system, Pro. 7th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2007), Freiburg, Germany, 323, 28-29 Nov. (2007).
- Von Büren, T., Tröster, G., Design and optimization of a linear vibration-driven electromagnetic micro-power generator, Sensors and Actuators A: Physical, 135(2), 765 (2007).
- Yuen, S.C., Lee, J.M., Li, W.J., Leong, P.H. An AA-Sized Vibration-Based Microgenerator for Wireless Sensors, IEEE Pervasive Computing, 6(1), 64 (2007).
- Hadas, Z., Kurfurst, J., Ondrusek, C., Singule, V., Artificial intelligence based optimisation for vibration energy harvesting applications, Microsystem Technologies, 1–12, (2012), DOI: 10.1007/s00542-012-1432-1
- Kurt, E., Kale, M.M., Akbaba, S., Bizon, N., Analytical and experimental studies on a new linear energy harvester, Canadian J. Physics, 2018, https://doi.org/10.1139/cjp-2017-0708.
- Hendijanizadeh, M., Sharkh, S.M., Elliott, S.J., Moshrefi-Torbati, M. Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion, Smart Materials and Structures, 22:125009 (2013).
Design and fabrication of a new micro-power scaled electromagnetic harvester
Year 2019,
Volume: 3 Issue: 2, 51 - 66, 30.06.2019
Busra Mutlu
Erol Kurt
,
Nicu Bizon
,
Jose Manuel Lopez Guede
Abstract
In the present study,
a new micro-power scaled electromagnetic (EM) harvester is designed and fabricated.
The device has an innovative magnetic flux varying mechanism with two
cylindrical Nb magnets and a central core moving inside the magnets back and
forth. The system harvest electricity from the linear oscillations by the help
of a spring attached at the bottom part of the core. The device requires only
one spring and a second linear-laminated core closes the flux outside of the
magnets in order to lower the reluctance of the system. The device is 6 cm in
length and 2.4 cm in width in cylindrical geometry as a compact and stable
geometry. The experimental verifications have proven that it can generate up to
U = 7.76 mV output voltage depending
on the oscillation frequency. The maximal output power has been measured as P= 32 mW for 44 Hz frequency with the resistive load RL
= 0.2 Ohm. The power density p = 1.17
mW/cm3 has been obtained,
experimentally.
References
- Beeby, S: P., O’Donnell, T. Electromagnetic Energy Harvesting, In Energy Harvesting Technologies (Editors: S. Priya, D.J. Inman), Springer, USA, 129 (2009).
- Uzun, Y., Kurt, E., Kurt, H.H., Explorations of displacement and velocity nonlinearities and their effects to power of a magnetically-excited piezoelectric pendulum, Sensors and Actuators A: Physical, 224, 119 (2015).
- Uzun, Y., Kurt, E., The effect of periodic magnetic force on a piezoelectric energy harvester, Sensors and Actuators A: Physical, 192, 58 (2013).
- Bizon, N., Tabatabaei, N.M., Blaabjerg, F., Kurt, E., Energy Harvesting and Energy Efficiency: Technology, Methods, and Applications, Springer, Switzerland, 107 (2017).
- Kurt, E., Gor, H., Doner,U., Electromagnetic design of a new axial and radial flux generator with the rotor back-irons, International Journal of Hydrogen Energy, 41(17), 7019 (2016).
- Arslan, S., Kurt, E., Akizu, O., Lopez-Guede, J.M., Design optimization study of a torus type axial flux machine. Journal of Energy Systems , 2(2): 43-56, (2018), DOI: 10.30521/jes. 408179
- Celik, K., Kurt, E., Uzun, Y., Experimental and theoretical explorations on the buckling piezoelectric layer under magnetic excitation, Journal of Electronic Materials, 46(7), 4003 (2017).
- Kurt, E., Cottone, F., Uzun, Y., Orfei, F., Mattarelli, F., Özhan, D., Design and implementation of a new contactless triple piezoelectrics wind energy harvester, Int. J. Hydrogen Energy, 42(28), 17813 (2017).
- Spreemann, D., Manoli, Y., Electromagnetic vibration energy harvesting devices: Architectures, design, modeling and optimization (Vol. 35). Springer Science & Business Media (2012).
- Amirtharajah, R., Chandrakasan, A.P., Self-powered signal processing using vibration-based power generation, IEEE Journal of Solid-State Circuits, 33(5), 687 (1998).
- El-Hami, M. , Glynne-Jones, P., White, N.M., Hill, M., Beeby, S., James, E., Brown, A.D., Ross, J.N., Design and fabrication of a new vibration-based electromechanical power generator”, Sensors and Actuators A: Physical, 92(1), 335 (2001).
- Glynne-Jones, P. , Tudor, M.J., Beeby, S.P., White, N.M., An electromagnetic, vibration-powered generator for intelligent sensor systems, Sensors and Actuators A: Physical, 110(1), 344 (2004).
- Beeby, S.P., Tudor, M.J., White, N.M. Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17, R175 (2006).
- Torah, R.N., Glynne-Jones, P., Tudor, M.J., Beeby, S.P. Energy aware wireless microsystem powered by vibration energy system, Pro. 7th Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2007), Freiburg, Germany, 323, 28-29 Nov. (2007).
- Von Büren, T., Tröster, G., Design and optimization of a linear vibration-driven electromagnetic micro-power generator, Sensors and Actuators A: Physical, 135(2), 765 (2007).
- Yuen, S.C., Lee, J.M., Li, W.J., Leong, P.H. An AA-Sized Vibration-Based Microgenerator for Wireless Sensors, IEEE Pervasive Computing, 6(1), 64 (2007).
- Hadas, Z., Kurfurst, J., Ondrusek, C., Singule, V., Artificial intelligence based optimisation for vibration energy harvesting applications, Microsystem Technologies, 1–12, (2012), DOI: 10.1007/s00542-012-1432-1
- Kurt, E., Kale, M.M., Akbaba, S., Bizon, N., Analytical and experimental studies on a new linear energy harvester, Canadian J. Physics, 2018, https://doi.org/10.1139/cjp-2017-0708.
- Hendijanizadeh, M., Sharkh, S.M., Elliott, S.J., Moshrefi-Torbati, M. Output power and efficiency of electromagnetic energy harvesting systems with constrained range of motion, Smart Materials and Structures, 22:125009 (2013).