Research Article
BibTex RIS Cite

KAYALARIN FARKLI TİP SCHMİDT ÇEKİCİ GERİ TEPME SERTLİK DEĞERLERİNİN TAHMİNİ İÇİN DÖNÜŞÜM KATSAYISI ÖNERİLMESİ

Year 2023, , 719 - 728, 28.06.2023
https://doi.org/10.21923/jesd.1177233

Abstract

Kayaların tek eksenli basınç dayanımı, çekme dayanımı, makaslama dayanımı gibi mekanik özellikleri yük altındaki davranışlarını belirleyen özellikleridir. Kayaların bu özelliklerini çoğu zaman zor, karmaşık, zaman alıcı, pahalı deney yöntemleri ile belirlenmektedir. Bu yüzden bu özellikleri doğrudan belirlemek yerine nispeten ucuz, hızlı ve kolay uygulanabilir yöntemlerle belirlenen kaya özellikleri ile bu özellikler dolaylı olarak tahmin edilebilir. Schmidt çekici geri sıçrama sertliği de kayaların ve betonun yüzey sertliğini tespit etmek için kullanılan bir yöntemdir. Schmidt çekici testi hızlı, görece ucuz ve kolay uygulanabilirdir. Aynı zamanda kayaların mekanik özelliklerinin dolaylı olarak belirlenmesinde kullanılır. Yöntemin hem arazide hem laboratuvarda uygulanabiliyor olması yöntemin diğer avantajlı yönüdür. Literatürde yaygın olarak kullanılan farklı darbe enerjilerine sahip iki farklı çekiç tipinin (N-tipi ve L-tipi) kullanıldığı görülmektedir. Bu çalışma kapsamında N-tipi ve L-tipi Schmidt çekici kullanılarak elde edilmiş sertlik değerlerinin birbiri ile arasındaki ilişkiler incelenmiştir. Bunun için literatürde farklı kaya türlerine ait hem N-tipi hem de L-tipi Schmidt çekici geri sıçrama sertliklerinin yer aldığı çalışmalardan veriler derlenmiş, derlenen veriler istatistiksel olarak incelenmiştir. N-tipi ve L-tipi Schmidt çekici geri sıçrama sertliklerinin birbirine dönüşümü için katsayılar önerilmiştir.

Supporting Institution

Bu çalışma KAYAMEK'2022 Sempozyumunda sözlü olarak sunulmuştur.

Project Number

Bu çalışma KAYAMEK'2022 Sempozyumunda sözlü olarak sunulmuştur.

Thanks

Bu çalışma KAYAMEK'2022 Sempozyumunda sözlü olarak sunulmuştur.

References

  • Akbay, D., Altındağ, R., 2020. Reliability and evaluation of point load index values obtained from different testing devices. Journal of the Southern African Institute of Mining and Metallurgy, 120, 181–90.
  • Aladejare, A.E., 2020. Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests. Journal of Rock Mechanics and Geotechnical Engineering,12, 256–68.
  • Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T., Kardanig, N., Armaghanih, D.J., 2021. Soft computing based closed form equations correlating L and L-type Schmidt hammer rebound numbers of rocks. Transportation Geotechnics, 29, 100588.
  • Ayday, C., Goktan, R.M., 1992. Correlations between L and L-type Schmidt hammer reboumd values obtained during field testing. ISRM Symposium: Eurock'92 - Rock Characterization, 14-17 September 1992, Chester, U.K., J.A.Hudson (ed.), British Geotechnical Society, London, 47-50.
  • Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterization. Engineering Geology, 81, 1–14.
  • Aydin, A., 2009. ISRM Suggested method for determination of the Schmidt hammer rebound hardness: Revised version*. International Journal of Rock Mechanics and Mining Sciences, 46, 627–34.
  • Bruno, G., Vessia, G., Bobbo, L., 2013. Statistical method for assessing the uniaxial compressive strength of carbonate rock by schmidt hammer tests performed on core samples. Rock Mechanics and Rock Engineering, 46, 199–206.
  • Buyuksagis, I.S., Goktan, R.M., 2007. The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. International Journal of Rock Mechanics and Mining Sciences, 44, 299–307.
  • Capik, M., Yılmaz, A.O., 2017. Modeling of Micro Deval abrasion loss based on some rock properties. Journal of African Earth Sciences, 134, 549–556.
  • Çelik, S.B., Çobanoğlu, İ., 2019. Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environmental Earth Sciences, 9, 78.
  • Çobanoǧlu, İ., Çelik, S.B., 2008. Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bulletin of Engineering Geology and the Environment, 67, 491–498.
  • Deere, D.U., Miller, R.P., 1966. Engineering classifications and index properties of intact rock. Technical Report No. AFNL-TR-65-116, Air Force Weapon Laboratory, New Mexico.
  • Demirdag, S., Sengun, N., Ugur, I., Altindag, R., 2018. Estimating the uniaxial compressive strength of rocks with Schmidt rebound hardness by considering the sample size. Arabian Journal of Geosciences, 11, 502.
  • Ekincioğlu, G., 2008. Çeşitli Kireçtaşlarının Delinebilirlik İndeks Özellikleri ve Kayaç Kesilebilirliği Arasındaki İlişkilerin Değerlendirmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, Isparta, 94 s.
  • Goktan, R.M., Ayday, C., 1993. A Suggested Improvement to the Schmidt Rebound Hardness ISRM Suggested Method with Particular Reference to Rock Machineability. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 30, 321–322.
  • Güney, A., Altındağ, R., Yavuz, H., Saraç, S., 2005. Evaluation of the Relationships between Schmidt Hardness Rebound Number and Other (Engineering) Properties of Rocks. The 19th International Mining Congress and Fair of Turkey, IMCET 2005, İzmir, 83–89.
  • ISRM, 1978. International society for rock mechanics commission on standardization of laboratory and field tests: Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15, 319–368.
  • ISRM, 2007. The complete suggested methods for rock characterization, testing and monitoring: 1974–2006, Springer, London, 293 pp.
  • Jamshidi, A., Nikudel, M.R., Khamehchiyan, M., Zarei Sahamieh, R., Abdi, Y., 2016. A correlation between P-wave velocity and Schmidt hardness with mechanical properties of travertine building stones. Arabian Journal of Geosciences, 9, 568.
  • Jedidi, M., 2020. Evaluation of the Quality of Concrete Structures by the Rebound Hammer Method. Current Trends in Civil and Structural Engineering, 5, 1-7.
  • Karaman, K., Erçıkdı, B., Cihangir, F., Kesimal, A., 2011. Kayaçların Tek Eksenli Basınç Dayanımı Tahmininde Schmidt Çekici Yöntemlerinin İncelenmesi. Türkiye 22. Uluslararası Madencilik Kongresi ve Sergisi, 11-13 Mayıs 2011, Ankara, 2011, 87–94.
  • Karaman, K., Kesimal, A., Ersoy, H., 2015. A comparative assessment of indirect methods for estimating the uniaxial compressive and tensile strength of rocks. Arabian Journal of Geosciences, 8, 2393–2403.
  • Kayabali, K., Selcuk, L., 2009. Nail penetration test for determining the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 47, 265–271.
  • Kong, F., Shang, J., 2018. A Validation Study for the Estimation of Uniaxial Compressive Strength Based on Index Tests. Rock Mechanics and Rock Engineering, 51, 2289–2297.
  • Mesutoğlu, M., Özkan, İ., 2019. Büyük ölçekli kömür arınında gerçekleştirilen Schmidt sertlik indeksi ve nokta yükleme dayanımı deney sonuçlarının değerlendirilmesi. Konya Journal of Engineering Sciences, 7, 681–95.
  • Minaeian, B., Ahangari, K., 2013. Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arabian Journal of Geosciences, 6, 1925–1931.
  • Mishra, D.A., Basu, A., 2013. Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Engineering Geology, 160, 54–68.
  • Özkan, İ., Kaya, M., 2020. Zayıf kaya malzemelerinin yerinde dayanımının belirlenmesinde indeks deneylerin kullanımı ile ilgili bir yaklaşım. Konya Journal of Engineering Sciences, 8, 135–50.
  • Palchik, V., 2007. Use of stress–strain model based on Haldane’s distribution function for prediction of elastic modulus. International Journal of Rock Mechanics and Mining Sciences, 44, 514–24.
  • Şengün, N., 2009. Kayaçların Kırılma Tokluğu ve Gevrekliğinin Dairesel Testereler İle Kesme Verimi Üzerine Etkileri. Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, Isparta, 182 s.
  • Tandon, R.S., Gupta, V., 2015. Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer rebound, point load index, and compressional wave velocity. Bulletin of Engineering Geology and the Environment, 74, 521–533.
  • Wang, M., Wan, W., 2019. A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test. International Journal of Rock Mechanics and Mining Sciences, 123, 104094.
  • Wang, Y., Aladejare, A.E., 2015. Selection of site-specific regression model for characterization of uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 75, 73–81.
  • Wang, Y., Aladejare, A.E., 2016. Bayesian characterization of correlation between uniaxial compressive strength and Young’s modulus of rock. International Journal of Rock Mechanics and Mining Sciences, 85, 10–9.
  • Yılmaz, I., Sendir, H., 2002. Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Engineering Geology, 66, 211–219.

SUGGESTING CONVERSION FACTOR COEFFICIENTS for ESTIMATING DIFFERENT TYPES of SCHMIDT HAMMER REBOUND HARDNESS VALUES

Year 2023, , 719 - 728, 28.06.2023
https://doi.org/10.21923/jesd.1177233

Abstract

Mechanical properties of rocks such as uniaxial compressive strength, tensile strength, shear strength are the properties that determine their behavior under load. These properties of rocks are often determined by difficult, complex, time-consuming and expensive test methods. Therefore, instead of determining these properties directly, these properties can be estimated indirectly by using relatively inexpensive, fast and easily applicable methods. The surface hardness parameter of Schmidt hammer rebound hardness is fast, inexpensive, and easy to apply to determine the hardness of rocks and concrete. It is also used to indirectly determine the mechanical properties of rocks. It is seen that two different types of hammers (N-type and L-type) with different impact energies are commonly used in the literature. In this study the correlations between the surface hardness of different rocks obtained using N-type and L-type Schmidt hammers were analyzed. For this purpose, data were compiled from studies in the literature, which included both N-type and L-type Schmidt hammer rebound hardness of different rock types, and the collected data were analyzed statistically. Coefficients have been proposed for the conversion of N-type and L-type Schmidt hammer rebound hardness to each other.

Project Number

Bu çalışma KAYAMEK'2022 Sempozyumunda sözlü olarak sunulmuştur.

References

  • Akbay, D., Altındağ, R., 2020. Reliability and evaluation of point load index values obtained from different testing devices. Journal of the Southern African Institute of Mining and Metallurgy, 120, 181–90.
  • Aladejare, A.E., 2020. Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests. Journal of Rock Mechanics and Geotechnical Engineering,12, 256–68.
  • Asteris, P.G., Mamou, A., Hajihassani, M., Hasanipanah, M., Koopialipoor, M., Le, T.T., Kardanig, N., Armaghanih, D.J., 2021. Soft computing based closed form equations correlating L and L-type Schmidt hammer rebound numbers of rocks. Transportation Geotechnics, 29, 100588.
  • Ayday, C., Goktan, R.M., 1992. Correlations between L and L-type Schmidt hammer reboumd values obtained during field testing. ISRM Symposium: Eurock'92 - Rock Characterization, 14-17 September 1992, Chester, U.K., J.A.Hudson (ed.), British Geotechnical Society, London, 47-50.
  • Aydin, A., Basu, A., 2005. The Schmidt hammer in rock material characterization. Engineering Geology, 81, 1–14.
  • Aydin, A., 2009. ISRM Suggested method for determination of the Schmidt hammer rebound hardness: Revised version*. International Journal of Rock Mechanics and Mining Sciences, 46, 627–34.
  • Bruno, G., Vessia, G., Bobbo, L., 2013. Statistical method for assessing the uniaxial compressive strength of carbonate rock by schmidt hammer tests performed on core samples. Rock Mechanics and Rock Engineering, 46, 199–206.
  • Buyuksagis, I.S., Goktan, R.M., 2007. The effect of Schmidt hammer type on uniaxial compressive strength prediction of rock. International Journal of Rock Mechanics and Mining Sciences, 44, 299–307.
  • Capik, M., Yılmaz, A.O., 2017. Modeling of Micro Deval abrasion loss based on some rock properties. Journal of African Earth Sciences, 134, 549–556.
  • Çelik, S.B., Çobanoğlu, İ., 2019. Comparative investigation of Shore, Schmidt, and Leeb hardness tests in the characterization of rock materials. Environmental Earth Sciences, 9, 78.
  • Çobanoǧlu, İ., Çelik, S.B., 2008. Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bulletin of Engineering Geology and the Environment, 67, 491–498.
  • Deere, D.U., Miller, R.P., 1966. Engineering classifications and index properties of intact rock. Technical Report No. AFNL-TR-65-116, Air Force Weapon Laboratory, New Mexico.
  • Demirdag, S., Sengun, N., Ugur, I., Altindag, R., 2018. Estimating the uniaxial compressive strength of rocks with Schmidt rebound hardness by considering the sample size. Arabian Journal of Geosciences, 11, 502.
  • Ekincioğlu, G., 2008. Çeşitli Kireçtaşlarının Delinebilirlik İndeks Özellikleri ve Kayaç Kesilebilirliği Arasındaki İlişkilerin Değerlendirmesi. Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, Isparta, 94 s.
  • Goktan, R.M., Ayday, C., 1993. A Suggested Improvement to the Schmidt Rebound Hardness ISRM Suggested Method with Particular Reference to Rock Machineability. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 30, 321–322.
  • Güney, A., Altındağ, R., Yavuz, H., Saraç, S., 2005. Evaluation of the Relationships between Schmidt Hardness Rebound Number and Other (Engineering) Properties of Rocks. The 19th International Mining Congress and Fair of Turkey, IMCET 2005, İzmir, 83–89.
  • ISRM, 1978. International society for rock mechanics commission on standardization of laboratory and field tests: Suggested methods for the quantitative description of discontinuities in rock masses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 15, 319–368.
  • ISRM, 2007. The complete suggested methods for rock characterization, testing and monitoring: 1974–2006, Springer, London, 293 pp.
  • Jamshidi, A., Nikudel, M.R., Khamehchiyan, M., Zarei Sahamieh, R., Abdi, Y., 2016. A correlation between P-wave velocity and Schmidt hardness with mechanical properties of travertine building stones. Arabian Journal of Geosciences, 9, 568.
  • Jedidi, M., 2020. Evaluation of the Quality of Concrete Structures by the Rebound Hammer Method. Current Trends in Civil and Structural Engineering, 5, 1-7.
  • Karaman, K., Erçıkdı, B., Cihangir, F., Kesimal, A., 2011. Kayaçların Tek Eksenli Basınç Dayanımı Tahmininde Schmidt Çekici Yöntemlerinin İncelenmesi. Türkiye 22. Uluslararası Madencilik Kongresi ve Sergisi, 11-13 Mayıs 2011, Ankara, 2011, 87–94.
  • Karaman, K., Kesimal, A., Ersoy, H., 2015. A comparative assessment of indirect methods for estimating the uniaxial compressive and tensile strength of rocks. Arabian Journal of Geosciences, 8, 2393–2403.
  • Kayabali, K., Selcuk, L., 2009. Nail penetration test for determining the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 47, 265–271.
  • Kong, F., Shang, J., 2018. A Validation Study for the Estimation of Uniaxial Compressive Strength Based on Index Tests. Rock Mechanics and Rock Engineering, 51, 2289–2297.
  • Mesutoğlu, M., Özkan, İ., 2019. Büyük ölçekli kömür arınında gerçekleştirilen Schmidt sertlik indeksi ve nokta yükleme dayanımı deney sonuçlarının değerlendirilmesi. Konya Journal of Engineering Sciences, 7, 681–95.
  • Minaeian, B., Ahangari, K., 2013. Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method. Arabian Journal of Geosciences, 6, 1925–1931.
  • Mishra, D.A., Basu, A., 2013. Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Engineering Geology, 160, 54–68.
  • Özkan, İ., Kaya, M., 2020. Zayıf kaya malzemelerinin yerinde dayanımının belirlenmesinde indeks deneylerin kullanımı ile ilgili bir yaklaşım. Konya Journal of Engineering Sciences, 8, 135–50.
  • Palchik, V., 2007. Use of stress–strain model based on Haldane’s distribution function for prediction of elastic modulus. International Journal of Rock Mechanics and Mining Sciences, 44, 514–24.
  • Şengün, N., 2009. Kayaçların Kırılma Tokluğu ve Gevrekliğinin Dairesel Testereler İle Kesme Verimi Üzerine Etkileri. Doktora Tezi, Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü, Maden Mühendisliği Anabilim Dalı, Isparta, 182 s.
  • Tandon, R.S., Gupta, V., 2015. Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer rebound, point load index, and compressional wave velocity. Bulletin of Engineering Geology and the Environment, 74, 521–533.
  • Wang, M., Wan, W., 2019. A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test. International Journal of Rock Mechanics and Mining Sciences, 123, 104094.
  • Wang, Y., Aladejare, A.E., 2015. Selection of site-specific regression model for characterization of uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, 75, 73–81.
  • Wang, Y., Aladejare, A.E., 2016. Bayesian characterization of correlation between uniaxial compressive strength and Young’s modulus of rock. International Journal of Rock Mechanics and Mining Sciences, 85, 10–9.
  • Yılmaz, I., Sendir, H., 2002. Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Engineering Geology, 66, 211–219.
There are 35 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Deniz Akbay 0000-0002-7794-5278

Gökhan Ekincioğlu 0000-0001-9377-6817

Project Number Bu çalışma KAYAMEK'2022 Sempozyumunda sözlü olarak sunulmuştur.
Publication Date June 28, 2023
Submission Date September 20, 2022
Acceptance Date March 15, 2023
Published in Issue Year 2023

Cite

APA Akbay, D., & Ekincioğlu, G. (2023). SUGGESTING CONVERSION FACTOR COEFFICIENTS for ESTIMATING DIFFERENT TYPES of SCHMIDT HAMMER REBOUND HARDNESS VALUES. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(2), 719-728. https://doi.org/10.21923/jesd.1177233