Research Article
BibTex RIS Cite

5-BAR PARALEL ROBOT MANİPÜLATÖRÜNÜN KUVVET BAZLI EMPEDANS KONTROLÜ

Year 2023, , 1452 - 1460, 30.12.2023
https://doi.org/10.21923/jesd.1300482

Abstract

Robotların çevre ile etkileşimleri birçok sektörde yaygınlaşarak artmaktadır. Özellikle Pozisyon ve kuvvete bağlı etkileşimler hassas uygulamalarda sıkılıkla kullanılmaktadır. Bu etkileşim kontrolünde empedans kontrolü ihtiyacı karşılamaktadır. Paralel robot manipülatörü ise bu alanda yaygın kullanılan ve birçok robot tasarımının temel örneklerini oluşturan modellerden biridir. Bu çalışmada örnek bir 5 uzuvlu robot manipülatörü tasarlanmıştır. Bu manipülatörün üzerinde uygulan kuvvet miktarına göre pozisyon değişimi empedans kontrolü ile yapılmıştır. Kuvvet miktarı ölçümü yük hücresi kullanılarak gerçekleştirilmiştir. Pozisyon değişimi ise manipülatörün ileri kinematik hesaplamaları ile hesaplanmıştır. Bu hesaplamalar ve kontrol işlemi gerçek zamanlı olarak Arduino Mega gömülü sistem kartı üzerinde yapılmıştır. Bu uygulama çalışması ile empedans kontrolünü etkileyen sertlik ve sönümleme katsayılarına göre robot manipülatörünün davranış analizi incelenmiş ve tasarlanan manipülatör için ideal katsayılar belirlenmiştir.

References

  • Abu-dakka, Fares J, and Matteo Saveriano. 2020. “Variable Impedance Control and Learning — A Review.” Frontiers in Robotics and AI 7(December): 1–18.
  • Arevalo, Juan Carlos, and Elena Garcia. 2012. “Impedance Control for Legged Robots : An Insight Into the Concepts Involved.” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 42(6): 1400–1411.
  • Ba, Kai-xian, and B I N Yu. 2018. “SPECIAL SECTION ON ADVANCED MODELING AND CONTROL OF COMPLEX A Novel Position-Based Impedance Control Method for Bionic Legged Robots ’ HDU.” IEEE Access 6.
  • Buchli, Jonas, Freek Stulp, Evangelos Theodorou, and Stefan Schaal. 2011. “Learning Variable Impedance Control.” The International Journal of Robotics Research 30(7): 820–33.
  • Campus, Umuttepe. 2021. “Impedance Control of a 2 DOF Serial Manipulator.” Robotica 39–9(May): 1–15.
  • Duperret, Jeffrey M, and D E Koditschek. 2015. “An Empirical Investigation of Legged Transitional Maneuvers Leveraging Raibert ’ s Scissor Algorithm.” IEEE Conference on Robotics and Biomimetics: 2531–38.
  • He, Zewen et al. 2021. “Applied Sciences Controllable Height Hopping of a Parallel Legged Robot.” Applied Sciences (Switzerland)sciences 11(1421): 1–16.
  • Hogan, Neville. 1985. “Impedance Control: An Approach to Manipulation: Part II—Implementation.” Journal of Dynamic Systems, Measurement, and Control 107: 8–16.
  • Ji, Wei et al. 2021. “Grasping Mode Analysis and Adaptive Impedance Control for Apple Harvesting Robotic Grippers.” Computers and Electronics in Agriculture 186(May).
  • Jiao, Chunting et al. 2022. “Automatica Adaptive Hybrid Impedance Control for Dual-Arm Cooperative Manipulation with Object Uncertainties ✩.” Automatica 140: 110232.
  • Lara-molina, Fabian Andres, and Karina Assolari Takano. 2018. “Multi-Objective Optimal Design of Fl Exible-Joint Parallel Robot Parallel Robot.” Engineering Computations 35(8): 2775–2801.
  • Le, Tien Dung, Hee-jun Kang, and Quang Vinh Doan. 2013. “A Method for Optimal Kinematic Design of Five-Bar Planar Parallel Manipulators.” 2013 International Conference on Control, Automation and Information Sciences (ICCAIS): 7–11.
  • Lou, Yunjiang, Guanfeng Liu, Jijie Xu, and Zexiang Li. 2004. “A General Approach for Optimal Kinematic Design of Parallel Manipulators.” In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, IEEE, 3659–64.
  • Luca, Alessandro De, Bruno Siciliano, and Loredana Zollo. 2005. “Brief Paper PD Control with On-Line Gravity Compensation for Robots with Elastic Joints : Theory and Experiments ଁ.” 41: 1809–19.
  • Palma, Piotr, Karol Seweryn, and Tomasz Rybus. 2022. “Impedance Control Using Selected Compliant Prismatic Joint in a Free-Floating Space Manipulator.” Aerospace 9(8).
  • Perrusquía, Adolfo, and Juan Alejandro Flores-campos. 2020. “A Novel Tuning Method of PD With Gravity Compensation Controller for Robot Manipulators.” IEEE Access 8.
  • Rigatos, Gerasimos, and Masoud Abbaszadeh. 2022. “Nonlinear Optimal Control for a Fi Ve-Link Parallel Robotic Manipulator.” Journal of Vibration and Control 0(May 2021): 1–22.
  • Song, Peng, Yueqing Yu, and Xuping Zhang. 2017. “Impedance Control of Robots : An Overview.” International Conference on Cybernetics, Robotics and Control (2).
  • Xu, Kang et al. 2020. “Adaptive Impedance Control with Variable Target Stiffness for Wheel-Legged Robot on Complex Unknown Terrain ☆.” Mechatronics 69(April).
  • Zhan-xi, Wang, Zhang Yi-ming, Chen Hang, and Wang Gang. 2021. “Adaptive Control Strategy of Robot Polishing Force Based on Position Impedance.” International Journal of Mechanical and Mechatronics Engineering 15(9): 427–33.

FORCE BASED IMPEDANCE CONTROL OF 5-BAR PARALLEL ROBOT MANIPULATOR

Year 2023, , 1452 - 1460, 30.12.2023
https://doi.org/10.21923/jesd.1300482

Abstract

The interaction of robots with the environment is increasing in many sectors. In particular, position and force-dependent interactions are frequently used in sensitive applications. In this interaction control, impedance control method answer the need. The parallel robot manipulator is one of the models that is widely used in this field and constitutes the basic of many robot designs. In this study, an exemplary 5-limb robot manipulator is designed. Position change according to the amount of load applied on this manipulator was realized with impedance control. Force amount measurement was applied using loadcell. The position change was calculated with the forward kinematic calculations of the manipulator. This calculation and control process was realized on the Arduino Mega embedded system board. With this experiment application study, the behaviour analysis of the robot manipulator was examined according to the stiffness and damping coefficients that affect the impedance control, and the ideal coefficients for the designed manipulator were determined.

References

  • Abu-dakka, Fares J, and Matteo Saveriano. 2020. “Variable Impedance Control and Learning — A Review.” Frontiers in Robotics and AI 7(December): 1–18.
  • Arevalo, Juan Carlos, and Elena Garcia. 2012. “Impedance Control for Legged Robots : An Insight Into the Concepts Involved.” IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS 42(6): 1400–1411.
  • Ba, Kai-xian, and B I N Yu. 2018. “SPECIAL SECTION ON ADVANCED MODELING AND CONTROL OF COMPLEX A Novel Position-Based Impedance Control Method for Bionic Legged Robots ’ HDU.” IEEE Access 6.
  • Buchli, Jonas, Freek Stulp, Evangelos Theodorou, and Stefan Schaal. 2011. “Learning Variable Impedance Control.” The International Journal of Robotics Research 30(7): 820–33.
  • Campus, Umuttepe. 2021. “Impedance Control of a 2 DOF Serial Manipulator.” Robotica 39–9(May): 1–15.
  • Duperret, Jeffrey M, and D E Koditschek. 2015. “An Empirical Investigation of Legged Transitional Maneuvers Leveraging Raibert ’ s Scissor Algorithm.” IEEE Conference on Robotics and Biomimetics: 2531–38.
  • He, Zewen et al. 2021. “Applied Sciences Controllable Height Hopping of a Parallel Legged Robot.” Applied Sciences (Switzerland)sciences 11(1421): 1–16.
  • Hogan, Neville. 1985. “Impedance Control: An Approach to Manipulation: Part II—Implementation.” Journal of Dynamic Systems, Measurement, and Control 107: 8–16.
  • Ji, Wei et al. 2021. “Grasping Mode Analysis and Adaptive Impedance Control for Apple Harvesting Robotic Grippers.” Computers and Electronics in Agriculture 186(May).
  • Jiao, Chunting et al. 2022. “Automatica Adaptive Hybrid Impedance Control for Dual-Arm Cooperative Manipulation with Object Uncertainties ✩.” Automatica 140: 110232.
  • Lara-molina, Fabian Andres, and Karina Assolari Takano. 2018. “Multi-Objective Optimal Design of Fl Exible-Joint Parallel Robot Parallel Robot.” Engineering Computations 35(8): 2775–2801.
  • Le, Tien Dung, Hee-jun Kang, and Quang Vinh Doan. 2013. “A Method for Optimal Kinematic Design of Five-Bar Planar Parallel Manipulators.” 2013 International Conference on Control, Automation and Information Sciences (ICCAIS): 7–11.
  • Lou, Yunjiang, Guanfeng Liu, Jijie Xu, and Zexiang Li. 2004. “A General Approach for Optimal Kinematic Design of Parallel Manipulators.” In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, IEEE, 3659–64.
  • Luca, Alessandro De, Bruno Siciliano, and Loredana Zollo. 2005. “Brief Paper PD Control with On-Line Gravity Compensation for Robots with Elastic Joints : Theory and Experiments ଁ.” 41: 1809–19.
  • Palma, Piotr, Karol Seweryn, and Tomasz Rybus. 2022. “Impedance Control Using Selected Compliant Prismatic Joint in a Free-Floating Space Manipulator.” Aerospace 9(8).
  • Perrusquía, Adolfo, and Juan Alejandro Flores-campos. 2020. “A Novel Tuning Method of PD With Gravity Compensation Controller for Robot Manipulators.” IEEE Access 8.
  • Rigatos, Gerasimos, and Masoud Abbaszadeh. 2022. “Nonlinear Optimal Control for a Fi Ve-Link Parallel Robotic Manipulator.” Journal of Vibration and Control 0(May 2021): 1–22.
  • Song, Peng, Yueqing Yu, and Xuping Zhang. 2017. “Impedance Control of Robots : An Overview.” International Conference on Cybernetics, Robotics and Control (2).
  • Xu, Kang et al. 2020. “Adaptive Impedance Control with Variable Target Stiffness for Wheel-Legged Robot on Complex Unknown Terrain ☆.” Mechatronics 69(April).
  • Zhan-xi, Wang, Zhang Yi-ming, Chen Hang, and Wang Gang. 2021. “Adaptive Control Strategy of Robot Polishing Force Based on Position Impedance.” International Journal of Mechanical and Mechatronics Engineering 15(9): 427–33.
There are 20 citations in total.

Details

Primary Language English
Subjects Control Engineering, Mechatronics and Robotics (Other)
Journal Section Research Articles
Authors

Eray Yılmazlar 0000-0002-0515-6712

Publication Date December 30, 2023
Submission Date May 22, 2023
Acceptance Date October 6, 2023
Published in Issue Year 2023

Cite

APA Yılmazlar, E. (2023). FORCE BASED IMPEDANCE CONTROL OF 5-BAR PARALLEL ROBOT MANIPULATOR. Mühendislik Bilimleri Ve Tasarım Dergisi, 11(4), 1452-1460. https://doi.org/10.21923/jesd.1300482