Research Article
BibTex RIS Cite

YÜKSEK FIRIN CÜRUFU VE ZEOLİT KATKILI BETONLARIN SÜLFAT DİRENCİNİN BELİRLENMESİ

Year 2019, , 254 - 264, 26.06.2019
https://doi.org/10.21923/jesd.454132

Abstract

Betonarme yapılardaki kalıcılık sorunlarından birisi de sülfat
saldırısıdır. Sülfat beton içerisinde bazı reaksiyonlarla çatlak, genleşme,
dağılma gibi bozulmalara yol açar ve sonuçta betonun dayanımında düşüşler gözlenir.
Bu çalışmada; mineral katkıların betonların sülfat direncine etkisi
incelenmiştir. Bu amaçla çimento yerine, yüksek fırın cürufu ve zeolit
kullanılarak betonlar üretilmiştir. Üretilen betonlarda yüksek fırın cürufu ve
zeolit çimento yerine ağırlıkça %10, %20 ve %30 oranlarında kullanılmıştır.
Üretilen betonlardan hazırlanan örnekler üzerinde 28, 90 ve 180 günlük kür
sonrasında basınç dayanımı, eğilme dayanımı ve birim ağırlık deneyleri
yapılmıştır. Ayrıca üretilen betonlardan hazırlanan örnekler 28 günlük kür
sonrasında 100 g/l sülfatlı (Na
2SO4) suda 90 ve 180 gün sülfat etkisine maruz bırakılarak ASTM C 1012’ye
uygun şekilde sülfat testleri de yapılmıştır. Ayrıca kontrol grubu ve %10
mineral katkılı gruplarda SEM görüntüleri, EDS ve XRD ışını ölçümleri ile
içyapı incelemesi yapılmıştır. Tüm gruplarda çimento türü (CEM I), toplam
bağlayıcı miktarı (
400 kg/m3), sülfat miktarı (100 g/l), agrega türü ve gradasyonu sabit
tutulmuştur. Sülfat etkisine maruz bırakılmamış kontrol numuneleri ve sülfat
etkisindeki numuneler kıyaslanmış, hem basınç hem de eğilme dayanımında en iyi
performansı %10 yüksek fırın cürufu ve zeolit içeren numunelerin gösterdiği
tespit edilmiştir.

References

  • ASTM C1017/C1017M-13e1, 2013. Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete, ASTM International, West Conshohocken, PA.
  • ASTM C 1012, 1989. Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. Annual Book of ASTM Standards, Philadelphia
  • ASTM C 311, 1994. Standart Test Method for Sampling and Testing Fly Ash or Natural Pozzolans for Use a Mineral Admixtural Portland – Cement Concrete. Annual Book of ASTM Standard.
  • ASTM C494/C494 M Type F, 2001. Standard Specification for Chemical Admixtures for Concrete.
  • Baradan, B., Yazıcı, H., Ün, H., 2010. Beton ve Betonarme Yapılarda Kalıcılık (Durabilite), Türkiye Hazır Beton Birliği Yayınları, İstanbul.
  • Brown, P.W., Hooton, R.D., Clark, B.A., 2004. Microstructural changes in concretes with sulfate exposure, Cem. Concr. Compos. 26, 993–999.
  • EN 480-10, 2001. Admixtures for concrete, mortar and grout - Test methods - Part 10: Determination of water soluble chloride content.
  • EN 480-12, 2008. Admixtures for concrete, mortar and grout - Test methods - Part 12: Determination of the alkali content of admixtures.
  • Erdoğdu, Ş., Kurbetçi, Ş., 2003. Betonun Performansına Sağladıkları Etkinlik Açısından Kimyasal ve Mineral Katkı Maddeleri, Türkiye Mühendislik Haberleri, 426 (4): 115-120.
  • Feng, N.Q., Li, Z., Zang, X. W., 1990. High – strength and Flowing Concrete with a Zeolite Mineral Admixture, Cement and Aggregates, Vol. 12, pp. 61-68.
  • Feng, N., and Peng, G., 2005. Applications of natural zeolite to construction and building materials in China, Construction and Building Materials 19, 579–584.
  • Franus, W., and Dudek, K., 1999. Clay minerals and clinoptilolite from the Variegated Shales Formation in the Skole Unit, Polish Flysch Carpath., Geologica Carpathica 50, 23–24.
  • Higashiyama, H., Yagishita, F., Sano, M., Takahashi, O., 2012. Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr Build Mater; 26:96–101.
  • Higgins, D.D., 2003. Increased sulfate resistance of ggbs concrete in the presence of carbonate, Cem. Concr. Compos. 25, 913–919.
  • Huang, B., Dong, Q., Burdette, E. G., 2009. Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete. Constr Build Mater; 23:3451–3456.
  • Irassar, E., Di Maio, A., Batic, O., 1996. Sulfate attack on concrete with mineral admixtures. Cem Concr Res;26(1):113–123.
  • Li, G., and Zhao, X., 2003. Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast Furnace Slag, Cement and Concrete Composites, Vol. 25, s. 293-299.
  • Medina, C., Sánchez, R. M., Frías, M., 2012. Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement Concr Compos; 34:48–54.
  • Mindness, S., Young, J. F., 1981. Concrete, New Jersey: Prentice-Hall Inc., Englewood Cliffs.
  • Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M., 2012. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Construction and Building Materials, 35, 1023–1033.
  • Pereira, O., Luiz, A., 2012. Castro-Gomes Joao P, Santos Pedro MS. The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr Build Mater; 31:197–203.
  • Rozière, E., Loukili, A., El Hachem, R., Grondin, F., 2009. Durabiltiy of concrete exposed to leaching and external sulphate attacks, Cem. Concr. Res. 39, 1188–1198.
  • Senthamarai, R., Devadas Manoharan, P., Gobinath, D., 2011. Concrete made from ceramic industry waste: durability properties. Constr Build Mater; 25:2413–2419.
  • Skaropoulou, A., Tsivilis, S., Kakali, G., Sharp, JH., Swamy, RN., 2009. Long term behavior of Portland limestone cement mortars exposed to magnesium sulfate attack. Cem Concr Compos;31(9):628–636.
  • TS EN 197-1, 2002. Çimento- Bölüm 1: Genel Çimentolar- Bileşim, Özellikler ve Uygunluk Kriterleri.
  • TS EN 12390-7, 2002. Beton- Sertleşmiş Beton Deneyleri- Bölüm 7: Sertleşmiş Betonun Yoğunluğunun Tayini.
  • Yazıcı, H., 2006. Yüksek Fırın Cürufu Katkılı Harçların Sülfat Dayanıklılığının İncelenmesi, Deü Mühendislik Fakültesi Fen ve Mühendislik Dergisi Cilt: 8 sayı: 1 s. 51-58 Ocak.
  • Yücel, H., 1987. Zeolitler ve Uygulama Alanları, III. Ulusal Kil Sempozyumu, pp:391-402.

DETERMINING SULPHATE RESISTANCE OF CONCRETES WITH BLAST FURNACE SLAG AND ZEOLITE

Year 2019, , 254 - 264, 26.06.2019
https://doi.org/10.21923/jesd.454132

Abstract

One of the problems in
reinforced concrete structures is sulphate attack. Some reactions of sulphate
with the cement, lead to deterioations in concrete such as cracks, expansion,
dispersion and as a result decreases are seen in strength of the concrete. In
this paper; the effect of mineral additives on the sulphate resistance of
concrete was investigated. For this aim concrete specimens were produced by
using blast furnace slag and zeolite instead of cement. In concrete specimens Blast
Furnace Slag (BFS) and zeolite were replaced with cement in weight 10%, 20%, 30%
ratio. Unit weights, compressive strength and flexural strength measurements
were made on the samples at 28, 90 and 180 days. In addition after 28 days
water curing, specimens were exposed to sulphate effect for 90 and 180 days in
100 g/l sulphated
(Na2SO4)
water according to ASTM C 1012. In the control group
and 10% mineral supplement groups, SEM images, EDS and XRD measurements were
used for internal structure analysis. In all groups, cement type, total amount
of binder, amount of sulphate, aggregate type and gradation were kept constant.
As a result, both water-cured samples and the samples in the sulphated water
were compared, best performance in both compressive and bending strength, is
obtained from 10% BFS and 10% zeolite groups.

References

  • ASTM C1017/C1017M-13e1, 2013. Standard Specification for Chemical Admixtures for Use in Producing Flowing Concrete, ASTM International, West Conshohocken, PA.
  • ASTM C 1012, 1989. Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. Annual Book of ASTM Standards, Philadelphia
  • ASTM C 311, 1994. Standart Test Method for Sampling and Testing Fly Ash or Natural Pozzolans for Use a Mineral Admixtural Portland – Cement Concrete. Annual Book of ASTM Standard.
  • ASTM C494/C494 M Type F, 2001. Standard Specification for Chemical Admixtures for Concrete.
  • Baradan, B., Yazıcı, H., Ün, H., 2010. Beton ve Betonarme Yapılarda Kalıcılık (Durabilite), Türkiye Hazır Beton Birliği Yayınları, İstanbul.
  • Brown, P.W., Hooton, R.D., Clark, B.A., 2004. Microstructural changes in concretes with sulfate exposure, Cem. Concr. Compos. 26, 993–999.
  • EN 480-10, 2001. Admixtures for concrete, mortar and grout - Test methods - Part 10: Determination of water soluble chloride content.
  • EN 480-12, 2008. Admixtures for concrete, mortar and grout - Test methods - Part 12: Determination of the alkali content of admixtures.
  • Erdoğdu, Ş., Kurbetçi, Ş., 2003. Betonun Performansına Sağladıkları Etkinlik Açısından Kimyasal ve Mineral Katkı Maddeleri, Türkiye Mühendislik Haberleri, 426 (4): 115-120.
  • Feng, N.Q., Li, Z., Zang, X. W., 1990. High – strength and Flowing Concrete with a Zeolite Mineral Admixture, Cement and Aggregates, Vol. 12, pp. 61-68.
  • Feng, N., and Peng, G., 2005. Applications of natural zeolite to construction and building materials in China, Construction and Building Materials 19, 579–584.
  • Franus, W., and Dudek, K., 1999. Clay minerals and clinoptilolite from the Variegated Shales Formation in the Skole Unit, Polish Flysch Carpath., Geologica Carpathica 50, 23–24.
  • Higashiyama, H., Yagishita, F., Sano, M., Takahashi, O., 2012. Compressive strength and resistance to chloride penetration of mortars using ceramic waste as fine aggregate. Constr Build Mater; 26:96–101.
  • Higgins, D.D., 2003. Increased sulfate resistance of ggbs concrete in the presence of carbonate, Cem. Concr. Compos. 25, 913–919.
  • Huang, B., Dong, Q., Burdette, E. G., 2009. Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete. Constr Build Mater; 23:3451–3456.
  • Irassar, E., Di Maio, A., Batic, O., 1996. Sulfate attack on concrete with mineral admixtures. Cem Concr Res;26(1):113–123.
  • Li, G., and Zhao, X., 2003. Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast Furnace Slag, Cement and Concrete Composites, Vol. 25, s. 293-299.
  • Medina, C., Sánchez, R. M., Frías, M., 2012. Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes. Cement Concr Compos; 34:48–54.
  • Mindness, S., Young, J. F., 1981. Concrete, New Jersey: Prentice-Hall Inc., Englewood Cliffs.
  • Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M., 2012. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan, Construction and Building Materials, 35, 1023–1033.
  • Pereira, O., Luiz, A., 2012. Castro-Gomes Joao P, Santos Pedro MS. The potential pozzolanic activity of glass and red-clay ceramic waste as cement mortars components. Constr Build Mater; 31:197–203.
  • Rozière, E., Loukili, A., El Hachem, R., Grondin, F., 2009. Durabiltiy of concrete exposed to leaching and external sulphate attacks, Cem. Concr. Res. 39, 1188–1198.
  • Senthamarai, R., Devadas Manoharan, P., Gobinath, D., 2011. Concrete made from ceramic industry waste: durability properties. Constr Build Mater; 25:2413–2419.
  • Skaropoulou, A., Tsivilis, S., Kakali, G., Sharp, JH., Swamy, RN., 2009. Long term behavior of Portland limestone cement mortars exposed to magnesium sulfate attack. Cem Concr Compos;31(9):628–636.
  • TS EN 197-1, 2002. Çimento- Bölüm 1: Genel Çimentolar- Bileşim, Özellikler ve Uygunluk Kriterleri.
  • TS EN 12390-7, 2002. Beton- Sertleşmiş Beton Deneyleri- Bölüm 7: Sertleşmiş Betonun Yoğunluğunun Tayini.
  • Yazıcı, H., 2006. Yüksek Fırın Cürufu Katkılı Harçların Sülfat Dayanıklılığının İncelenmesi, Deü Mühendislik Fakültesi Fen ve Mühendislik Dergisi Cilt: 8 sayı: 1 s. 51-58 Ocak.
  • Yücel, H., 1987. Zeolitler ve Uygulama Alanları, III. Ulusal Kil Sempozyumu, pp:391-402.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ahmet Ferhat Bingöl

Heydar Haghghipour Balanejı This is me 0000-0001-5444-2101

Publication Date June 26, 2019
Submission Date August 16, 2018
Acceptance Date December 28, 2018
Published in Issue Year 2019

Cite

APA Bingöl, A. F., & Balanejı, H. H. (2019). YÜKSEK FIRIN CÜRUFU VE ZEOLİT KATKILI BETONLARIN SÜLFAT DİRENCİNİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(2), 254-264. https://doi.org/10.21923/jesd.454132