Research Article
BibTex RIS Cite

OPTIMIZATION OF RESERVE CAPACITY IN URBAN ROAD NETWORKS BASED ON TRAFFIC SIGNAL TIMINGS

Year 2019, , 787 - 795, 19.12.2019
https://doi.org/10.21923/jesd.459055

Abstract

Traffic congestion in
cities brings economic, social and environmental problems. Local governments
seeking to overcome these problems are trying to meet transportation demand by
making expensive investments such as road extension, lane addition and intersection
renewal. However, as is known, reserve capacity can be created by determining
the appropriate signal timings in urban transportation networks. By using this
capacity, traffic congestion and its negative effects can be reduced. In this
study, a bi-level model is developed for solving the problem of the reserve
capacity maximization in urban road networks. At the upper level, the Origin-Destination
(O-D) demand multiplier is maximized and the traffic assignment problem is solved
at the lower level. Applying the model to the Allsop & Charlesworth’s test
network, it has been found that the O-D matrix can be increased by about 16%
without exceeding the capacities of the links in the road network. 

References

  • Allsop, R.E., 1972. Estimating the traffic capacity of a signalized road junction. Transportation Research, 6, 245-255.
  • Allsop, R.E., Charlesworth, J.A., 1977. Traffic in a signal-controlled road network: an example of different signal timings including different routings. Traffic Engineering Control, 18 (5), 262-264.
  • Baskan, O., Ozan, C., 2017. Reserve Capacity Model for Optimizing Traffic Signal Timings with an Equity Constraint. H. Yaghoubi (Edt.), Highway Engineering, içinde (s.1-15), IntechOpen.
  • Baskan, O., 2014. Harmony Search Algorithm for Continuous Network Design Problem with Link Capacity Expansions. KSCE Journal of Civil Engineering, 18 (1), 273-283.
  • Bell, M.G.H., Shield, C.M., 1995. A log-linear model for path flow estimation. Y.J. Stephanedes, F. Filippi (Edt.), Proceedings of the 4th International Conference on the Applications of Advanced Technologies in Transportation Engineering, 695-699, Capri, Italy.
  • Ceylan, H., 2002. A genetic algorithm approach to the equilibrium network design problem. Doktora Tezi. Newcastle upon Tyne Üniversitesi, İngiltere.
  • Ceylan, H., Ceylan, H., 2012. A Hybrid Harmony Search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks. Transportation Research Part C, 25, 152-167.
  • Ceylan, H., Bell, M.G.H., 2004. Reserve capacity for a road network under optimized fixed time traffic signal control. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 8 (2), 87-99.
  • Ceylan, H., Özcan, T., 2018. Otobüs ağlarındaki sefer sıklıklarının Armoni Araştırması Algoritması ile optimizasyonu: Mandl test ağı üzerine bir uygulama. Pamukkale University Journal of Engineering Sciences, 24(6), 1107-1116.
  • Chiou, S.-W., 2007. Reserve capacity of signal-controlled road network. Applied Mathematics and Computation, 190 (2), 1602-1611.
  • Chiou, S.-W., 2009. Optimization for signal setting problems using non-smooth techniques. Information Sciences, 179, 2985-2996.
  • Chiou, S.-W., 2014. Optimal signal-setting for road network with maximum capacity. Information Sciences, 273, 287-303.
  • Dell’Orco, M., Baskan, O., Marinelli, M., 2013. A Harmony Search Algorithm Approach for Optimizing Traffic Signal Timings. Promet Traffic&Transportation, 25 (4), 349-358.
  • Gao, K., Zhang, Y., Sadollah, A., Su, R., 2016. Optimizing urban traffic light scheduling problem using harmonysearch with ensemble of local search. Applied Soft Computing, 48, 359-372.
  • Geem, Z. W., Kim, J.H., Loganathan, G.V., 2001. A New Heuristic Optimization Algorithm: Harmony Search. Simulation, 76 (2), 60-68.
  • Geem, Z.W., 2005. Harmony search in water pump switching problem. In: Wang, L., Chen, K., Ong, Y.S. (Eds.), Lecture Notes in Computer Science, ICNC 2005, LNCS, vol. 3612. Springer-Verlag, Berlin, Germany, 751–760.
  • Geem, Z.W., 2006. Improved harmony search from ensemble of music players. In: Gabrys, B., Howlett, R.J., Jain, L.C. (Eds.), Lecture Notes in Artificial Intelligence, KES 2006, Part I, LNAI, vol. 4251. Springer-Verlag, Berlin, Germany, 86–93.
  • Geem, Z.W., 2007. Optimal scheduling of multiple dam system using harmony search algorithm. In: Sandoval, F. et al. (Eds.), Lecture Notes in Computer Science, IWANN 2007, LNCS, vol. 4507. Springer-Verlag, Berlin, Germany, 316–323.
  • Han, F., Cheng, L., 2017. Stochastic user equilibrium model with a tradable credit scheme and application in maximizing network reserve capacity. Engineering Optimization, 49 (4), 549-564.
  • Miandoabchi, E., Farahani, R.Z., 2011. Optimizing reserve capacity of urban road networks in a discrete network design problem. Advances in Engineering Software, 42 (12), 1041-1050.
  • Miandoabchi, Elnaz., Farahani R.Z., Szeto, W.Y., 2012. Bi-objective bimodal urban road network design using hybrid metaheuristics. Central European Journal of Operations Research, 20, 583-621.
  • Salcedo-Sanz, S., Manjarres, D., Pastor-Sanchez, A., Del Ser, J.D., Portilla-Figueras, J.A., Gil-Lopez, S., 2013. One-way urban traffic reconfiguration using a multi-objective harmony search approach. Expert Systems with Applications, 40, 3341-3350.
  • Wang, J., Deng W., Zhao, J., 2015. Road network reserve capacity with stochastic user equilibrium. Transport, 30 (1), 103-116.
  • Webster, F.V., Cobbe, B.M., 1966. Traffic signal. Road Research Technical Paper No. 56, HMSO, London.
  • Wong, S.C., Yang, H., 1997. Reserve capacity of a signal-controlled road network. Transportation Research Part B, 31, 397-402.
  • Xiao, H., Gao, J., Zou, Z., 2017. Reserve capacity model based on variable demand for land-use development control. Transportation Planning and Technology, 40 (2), 199-212.
  • Yagar, S., 1985. Addressing errors and omissions in paper on intersection capacity maximization. Transportation Research Part B, 19, 81-84.
  • Yang, H., Bell, M.G.H., Meng, Q., 2000. Modeling the capacity and level of service of urban transportation networks. Transportation Research Part B, 34 (4), 255-275.
  • Ziyou, G., Yifan, S., 2002. A reserve capacity model of optimal signal control with user-equilibrium route choice. Transportation Research Part B, 36, 313-323.

KENTİÇİ KARAYOLU AĞLARINDA IŞIK SÜRELERİ DİKKATE ALINARAK YEDEK KAPASİTENİN ENİYİLENMESİ

Year 2019, , 787 - 795, 19.12.2019
https://doi.org/10.21923/jesd.459055

Abstract

Kentlerdeki trafik sıkışıklığı ekonomik, sosyal ve çevresel
problemleri beraberinde getirmektedir. Bu problemlerin önüne geçmek isteyen
yerel yönetimler, yol genişletmesi, şerit ilavesi ve kavşak yenileme
çalışmaları gibi pahalı yatırımlar yaparak ulaşım talebini karşılamaya
çalışmaktadır. Ancak bilindiği gibi kentiçi ulaşım ağlarında uygun ışık
sürelerinin belirlenmesi ile yedek kapasite yaratılabilmektedir. Bu kapasitenin
kullanılması neticesinde trafik sıkışıklığı ve beraberinde getirdiği olumsuz
etkiler azaltılabilmektedir. Bu çalışmada kentiçi ulaşım ağlarındaki yedek
kapasitenin enbüyüklenmesi probleminin çözümü için iki seviyeli bir model
geliştirilmiştir. Üst seviyede Başlangıç-Varış (B-V) seyahat matrisi çarpanı
enbüyüklenirken, alt seviyede trafik ataması problemi çözülmektedir.
Geliştirilen modelin Allsop & Charlesworth test ağına uygulanması
neticesinde yol ağındaki bağların kapasiteleri aşılmadan B-V seyahat matrisinin
yaklaşık %16 artırılabileceği belirlenmiştir.

References

  • Allsop, R.E., 1972. Estimating the traffic capacity of a signalized road junction. Transportation Research, 6, 245-255.
  • Allsop, R.E., Charlesworth, J.A., 1977. Traffic in a signal-controlled road network: an example of different signal timings including different routings. Traffic Engineering Control, 18 (5), 262-264.
  • Baskan, O., Ozan, C., 2017. Reserve Capacity Model for Optimizing Traffic Signal Timings with an Equity Constraint. H. Yaghoubi (Edt.), Highway Engineering, içinde (s.1-15), IntechOpen.
  • Baskan, O., 2014. Harmony Search Algorithm for Continuous Network Design Problem with Link Capacity Expansions. KSCE Journal of Civil Engineering, 18 (1), 273-283.
  • Bell, M.G.H., Shield, C.M., 1995. A log-linear model for path flow estimation. Y.J. Stephanedes, F. Filippi (Edt.), Proceedings of the 4th International Conference on the Applications of Advanced Technologies in Transportation Engineering, 695-699, Capri, Italy.
  • Ceylan, H., 2002. A genetic algorithm approach to the equilibrium network design problem. Doktora Tezi. Newcastle upon Tyne Üniversitesi, İngiltere.
  • Ceylan, H., Ceylan, H., 2012. A Hybrid Harmony Search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks. Transportation Research Part C, 25, 152-167.
  • Ceylan, H., Bell, M.G.H., 2004. Reserve capacity for a road network under optimized fixed time traffic signal control. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 8 (2), 87-99.
  • Ceylan, H., Özcan, T., 2018. Otobüs ağlarındaki sefer sıklıklarının Armoni Araştırması Algoritması ile optimizasyonu: Mandl test ağı üzerine bir uygulama. Pamukkale University Journal of Engineering Sciences, 24(6), 1107-1116.
  • Chiou, S.-W., 2007. Reserve capacity of signal-controlled road network. Applied Mathematics and Computation, 190 (2), 1602-1611.
  • Chiou, S.-W., 2009. Optimization for signal setting problems using non-smooth techniques. Information Sciences, 179, 2985-2996.
  • Chiou, S.-W., 2014. Optimal signal-setting for road network with maximum capacity. Information Sciences, 273, 287-303.
  • Dell’Orco, M., Baskan, O., Marinelli, M., 2013. A Harmony Search Algorithm Approach for Optimizing Traffic Signal Timings. Promet Traffic&Transportation, 25 (4), 349-358.
  • Gao, K., Zhang, Y., Sadollah, A., Su, R., 2016. Optimizing urban traffic light scheduling problem using harmonysearch with ensemble of local search. Applied Soft Computing, 48, 359-372.
  • Geem, Z. W., Kim, J.H., Loganathan, G.V., 2001. A New Heuristic Optimization Algorithm: Harmony Search. Simulation, 76 (2), 60-68.
  • Geem, Z.W., 2005. Harmony search in water pump switching problem. In: Wang, L., Chen, K., Ong, Y.S. (Eds.), Lecture Notes in Computer Science, ICNC 2005, LNCS, vol. 3612. Springer-Verlag, Berlin, Germany, 751–760.
  • Geem, Z.W., 2006. Improved harmony search from ensemble of music players. In: Gabrys, B., Howlett, R.J., Jain, L.C. (Eds.), Lecture Notes in Artificial Intelligence, KES 2006, Part I, LNAI, vol. 4251. Springer-Verlag, Berlin, Germany, 86–93.
  • Geem, Z.W., 2007. Optimal scheduling of multiple dam system using harmony search algorithm. In: Sandoval, F. et al. (Eds.), Lecture Notes in Computer Science, IWANN 2007, LNCS, vol. 4507. Springer-Verlag, Berlin, Germany, 316–323.
  • Han, F., Cheng, L., 2017. Stochastic user equilibrium model with a tradable credit scheme and application in maximizing network reserve capacity. Engineering Optimization, 49 (4), 549-564.
  • Miandoabchi, E., Farahani, R.Z., 2011. Optimizing reserve capacity of urban road networks in a discrete network design problem. Advances in Engineering Software, 42 (12), 1041-1050.
  • Miandoabchi, Elnaz., Farahani R.Z., Szeto, W.Y., 2012. Bi-objective bimodal urban road network design using hybrid metaheuristics. Central European Journal of Operations Research, 20, 583-621.
  • Salcedo-Sanz, S., Manjarres, D., Pastor-Sanchez, A., Del Ser, J.D., Portilla-Figueras, J.A., Gil-Lopez, S., 2013. One-way urban traffic reconfiguration using a multi-objective harmony search approach. Expert Systems with Applications, 40, 3341-3350.
  • Wang, J., Deng W., Zhao, J., 2015. Road network reserve capacity with stochastic user equilibrium. Transport, 30 (1), 103-116.
  • Webster, F.V., Cobbe, B.M., 1966. Traffic signal. Road Research Technical Paper No. 56, HMSO, London.
  • Wong, S.C., Yang, H., 1997. Reserve capacity of a signal-controlled road network. Transportation Research Part B, 31, 397-402.
  • Xiao, H., Gao, J., Zou, Z., 2017. Reserve capacity model based on variable demand for land-use development control. Transportation Planning and Technology, 40 (2), 199-212.
  • Yagar, S., 1985. Addressing errors and omissions in paper on intersection capacity maximization. Transportation Research Part B, 19, 81-84.
  • Yang, H., Bell, M.G.H., Meng, Q., 2000. Modeling the capacity and level of service of urban transportation networks. Transportation Research Part B, 34 (4), 255-275.
  • Ziyou, G., Yifan, S., 2002. A reserve capacity model of optimal signal control with user-equilibrium route choice. Transportation Research Part B, 36, 313-323.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Özgür Başkan 0000-0001-5016-8328

Cenk Ozan 0000-0003-0690-6033

Hüseyin Ceylan 0000-0002-8840-4936

Publication Date December 19, 2019
Submission Date September 11, 2018
Acceptance Date May 24, 2019
Published in Issue Year 2019

Cite

APA Başkan, Ö., Ozan, C., & Ceylan, H. (2019). KENTİÇİ KARAYOLU AĞLARINDA IŞIK SÜRELERİ DİKKATE ALINARAK YEDEK KAPASİTENİN ENİYİLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(4), 787-795. https://doi.org/10.21923/jesd.459055