Research Article
BibTex RIS Cite

DETERMINATION OF BALLAST FOULING VIA GROUND PENETRATING RADAR

Year 2020, , 572 - 581, 25.06.2020
https://doi.org/10.21923/jesd.695507

Abstract

In this study, investigations are carried out in the Çatalca region of the Istanbul-Edirne railway line in order to detect defects related to the contamination in the railway infrastructure using ground penetration radar. Measurements are performed before and after the renovation works on the renewed railway line. In addition, the ballast sample is taken, and the degree of fouling is determined. According to the evaluation, excessive deformation of the ballast layer, ballast pockets and ballast fouling are detected in the old railway. Infrastructure layers are determined after the renovation. The radar measurement results on the old and new rail lines are presented comparatively.

Project Number

3165-D1-12

References

  • Al-Qadi, I., Xie, W., Roberts, R., 2008. Time-Frequency Approach for Ground Penetrating Radar Data Analysis to Assess Railroad Ballast Condition. Research in Nondestructive Evaluation, 19:4, 219-237.
  • Al-Qadi, I., Xie, W., Roberts, R., 2010. Optimization of Antenna Configuration in Multiple-Frequency Ground Penetrating Radar System for Railroad Substructure Assesment. NDT&E International, 43, 20-28.
  • Anbazhagan, P., Su, L., Indraratna, B., Rujikiatkamjorn, C., 2011. Model Track Studies on Fouled Ballast Using Ground Penetrating Radar and Multichannel Analysis of Surface Wave. Journal of Applied Geophysics. 74, 175-184.
  • Benedetto, F., Tosti, F., Alani, M., 2017. An Entropy-Based Analysis of GPR Data for the Assessment of Railway Ballast Conditions. IEEE Transactions on Geoscience and Remote Sensing. Vol.55, No.7.
  • Danesh, A., Palassi M., Mirghasemi A.A., 2018. Effect of Sand and Clay Fouling on the Shear Strength of Railway Ballast for Different Ballast Gradations. Granular Matter (2018) 20: 51.
  • Daniels, D.J. (Ed), 2004. Ground Penetrating Radar – 2nd Edition. The Institution of Electrical Engineers, London, United Kingdom.
  • Ebrahimi, A., Tinjum, J.M., Edil, T.B., 2014. Deformational Behavior of Fouled Railway Ballast. Canadian Geotechnical Journal. 52, 344-355.
  • Esmaeili, M., Zakeri, J.A., Mosayebi, S.A., 2014. Effect of Sand Fouled Ballast on Train-Induced Vibration. International Journal of Pavement Engineering Vol.15, No.7, 635-644.
  • Fontul, S., Furtunato, E., De Chiara, F., Burrinha, R., Baldeiras, M., 2016. Railways Track Characterization Using Ground Penetrating Radar, Procedia engineering, 143, 1193-1200.
  • Huang, H., Tutumluer, E., 2011. Discrete Element Modeling for Fouled Railroad Ballast. Construction and Building Materials. 25, 3306-3312.
  • Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., Vinod, J.S., 2014. Behavior of Fresh and Fouled Railway Ballast Subjected to Direct Shear Testing: Discrete Element Simulation. International Journal of Geomechanics, 14(1): 34-44.
  • Indraratna B., Su, L.J., Rujikiatkamjorn, C., 2011. A New Parameter for Classification and Evaluation of Railway Ballast Fouling. Canadian Geotechnical Journal 48, 322-326.
  • Kashani, H.F., Ho, C.L., Hyslip, J.P., 2018. Fouling and Water content Influence on the Ballast Deformation Properties. Construction and Building Materials. 190, 881-895.
  • Li, D., Hyslip, J., Sussmann, T., Chrismer, S., 2016. Railway Geotechnics. CRC Press Taylor & Francis Group, 592p, Boca Raton.
  • Olhoeft, G.R., Selig, E.T., 2002. Ground Penetrating Radar Evaluation of Railway Track Substructure Conditions. Ninth International Conference on Ground Penetrating Radar, Proc. SPIE Vol. 4758, pp. 48-53.
  • Parsons, R. L., Rahman, A. J., Han, J., & Glavinich, T. E. (2014). Track Ballast Fouling and Permeability Characterization by Using Resistivity. Transportation Research Record. 2448 (1), 133-141.
  • Selig, E.T., Waters, 1994. Track Geotechnology and Substructure Management. Thomas Telford, 446p, London.
  • Shao, W., Bouzerdoum, A., Phung, S.L., Su, L., Indraratna, B., Rujikiatkamjorn, C., 2011. Automatic Classification of Ground-Penetrating-Radar Signals for Railway-Ballast Assessment. IEEE Transactions on Geoscience and Remote Sensing Vol.49, No. 10.
  • Tosti, F., Ciampoli, L.B., Calvi, A., Alani, A.M., Benedetto, A., 2018. An Investigation into the Railway Ballast Dielectric Properties Using Different GPR Antennas and Frequency systems. NDT and E International 93, 131-140.
  • Yurlov, D., Zarembski, A.M., Okine, N.A., Palese, J.W., Thompson, H., 2019. Probabilistic Approach for Decelopment of Track Geometry Defects as a Function of Ground Penetrating Radar Measurements. Transportation Infrastructure Geotechnology 6, 1-20.

YERE NÜFUZ EDEN RADAR YÖNTEMİ İLE BALAST KİRLİLİĞİNİN BELİRLENMESİ

Year 2020, , 572 - 581, 25.06.2020
https://doi.org/10.21923/jesd.695507

Abstract

Bu çalışmada, demiryolu altyapısındaki kirlenmeye bağlı kusurları yere nüfuz eden radar (GPR) kullanarak tespit etmek amacıyla İstanbul-Edirne demiryolu hattının Çatalca bölgesinde çalışmalar yürütülmüştür. Yenilenen demiryolu hattında yenileme çalışmalarından önce ve sonra ölçümler yapılmıştır. Ayrıca balast numunesi alınarak kirlilik derecesi belirlenmiştir. Yapılan değerlendirmeye göre eski demiryolunda balast tabakasının aşırı deformasyonu, balast cepleri ve balast kirliliği tespit edilmiştir. Yenileme sonrasında altyapı tabakaları tespit edilmiştir. Eski ve yeni demiryolu hattında yapılan radar ölçüm sonuçları karşılaştırmalı olarak sunulmuştur.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

3165-D1-12

Thanks

Bu çalışma Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 3165-D1-12 nolu proje kapsamında desteklenmiştir.

References

  • Al-Qadi, I., Xie, W., Roberts, R., 2008. Time-Frequency Approach for Ground Penetrating Radar Data Analysis to Assess Railroad Ballast Condition. Research in Nondestructive Evaluation, 19:4, 219-237.
  • Al-Qadi, I., Xie, W., Roberts, R., 2010. Optimization of Antenna Configuration in Multiple-Frequency Ground Penetrating Radar System for Railroad Substructure Assesment. NDT&E International, 43, 20-28.
  • Anbazhagan, P., Su, L., Indraratna, B., Rujikiatkamjorn, C., 2011. Model Track Studies on Fouled Ballast Using Ground Penetrating Radar and Multichannel Analysis of Surface Wave. Journal of Applied Geophysics. 74, 175-184.
  • Benedetto, F., Tosti, F., Alani, M., 2017. An Entropy-Based Analysis of GPR Data for the Assessment of Railway Ballast Conditions. IEEE Transactions on Geoscience and Remote Sensing. Vol.55, No.7.
  • Danesh, A., Palassi M., Mirghasemi A.A., 2018. Effect of Sand and Clay Fouling on the Shear Strength of Railway Ballast for Different Ballast Gradations. Granular Matter (2018) 20: 51.
  • Daniels, D.J. (Ed), 2004. Ground Penetrating Radar – 2nd Edition. The Institution of Electrical Engineers, London, United Kingdom.
  • Ebrahimi, A., Tinjum, J.M., Edil, T.B., 2014. Deformational Behavior of Fouled Railway Ballast. Canadian Geotechnical Journal. 52, 344-355.
  • Esmaeili, M., Zakeri, J.A., Mosayebi, S.A., 2014. Effect of Sand Fouled Ballast on Train-Induced Vibration. International Journal of Pavement Engineering Vol.15, No.7, 635-644.
  • Fontul, S., Furtunato, E., De Chiara, F., Burrinha, R., Baldeiras, M., 2016. Railways Track Characterization Using Ground Penetrating Radar, Procedia engineering, 143, 1193-1200.
  • Huang, H., Tutumluer, E., 2011. Discrete Element Modeling for Fouled Railroad Ballast. Construction and Building Materials. 25, 3306-3312.
  • Indraratna, B., Ngo, N.T., Rujikiatkamjorn, C., Vinod, J.S., 2014. Behavior of Fresh and Fouled Railway Ballast Subjected to Direct Shear Testing: Discrete Element Simulation. International Journal of Geomechanics, 14(1): 34-44.
  • Indraratna B., Su, L.J., Rujikiatkamjorn, C., 2011. A New Parameter for Classification and Evaluation of Railway Ballast Fouling. Canadian Geotechnical Journal 48, 322-326.
  • Kashani, H.F., Ho, C.L., Hyslip, J.P., 2018. Fouling and Water content Influence on the Ballast Deformation Properties. Construction and Building Materials. 190, 881-895.
  • Li, D., Hyslip, J., Sussmann, T., Chrismer, S., 2016. Railway Geotechnics. CRC Press Taylor & Francis Group, 592p, Boca Raton.
  • Olhoeft, G.R., Selig, E.T., 2002. Ground Penetrating Radar Evaluation of Railway Track Substructure Conditions. Ninth International Conference on Ground Penetrating Radar, Proc. SPIE Vol. 4758, pp. 48-53.
  • Parsons, R. L., Rahman, A. J., Han, J., & Glavinich, T. E. (2014). Track Ballast Fouling and Permeability Characterization by Using Resistivity. Transportation Research Record. 2448 (1), 133-141.
  • Selig, E.T., Waters, 1994. Track Geotechnology and Substructure Management. Thomas Telford, 446p, London.
  • Shao, W., Bouzerdoum, A., Phung, S.L., Su, L., Indraratna, B., Rujikiatkamjorn, C., 2011. Automatic Classification of Ground-Penetrating-Radar Signals for Railway-Ballast Assessment. IEEE Transactions on Geoscience and Remote Sensing Vol.49, No. 10.
  • Tosti, F., Ciampoli, L.B., Calvi, A., Alani, A.M., Benedetto, A., 2018. An Investigation into the Railway Ballast Dielectric Properties Using Different GPR Antennas and Frequency systems. NDT and E International 93, 131-140.
  • Yurlov, D., Zarembski, A.M., Okine, N.A., Palese, J.W., Thompson, H., 2019. Probabilistic Approach for Decelopment of Track Geometry Defects as a Function of Ground Penetrating Radar Measurements. Transportation Infrastructure Geotechnology 6, 1-20.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Mehmet Çağrı Bayrak 0000-0002-9995-7325

Mesut Tigdemir 0000-0002-5303-2722

Mustafa Karaşahin 0000-0002-3811-2230

Olcay Çakmak This is me 0000-0003-4282-4481

Project Number 3165-D1-12
Publication Date June 25, 2020
Submission Date February 27, 2020
Acceptance Date April 29, 2020
Published in Issue Year 2020

Cite

APA Bayrak, M. Ç., Tigdemir, M., Karaşahin, M., Çakmak, O. (2020). YERE NÜFUZ EDEN RADAR YÖNTEMİ İLE BALAST KİRLİLİĞİNİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(2), 572-581. https://doi.org/10.21923/jesd.695507