Research Article
BibTex RIS Cite

ÇOK BİLEŞENLİ KALIPLAMA YÖNTEMİNE UYGUN SÜREKLİ ELYAFLI TERMOPLASTİK KOMPOZİT AKÜ TAŞIYICI PARÇASININ GELİŞTİRİLMESİ

Year 2020, , 1223 - 1235, 25.12.2020
https://doi.org/10.21923/jesd.710486

Abstract

Emisyon standartlarının sürekli geliştirilmesinden dolayı ağırlık azaltma bu standartları yakalama açısından önem kazanmıştır. Yakıt tüketimi ve performans iyileştirmeleri için maliyetleri kontrol altında tutarken tüm araç bileşenlerinin ağırlığını azaltmak, araç ağırlık azaltması için yenilikçi çözümlere yol açmıştır. Araç ağırlık azaltma çalışmalarında çelik yerine çelik kullanımını azaltmak için polimer kompozit malzemelerin kullanılması dikkat çekicidir. Farklı sektörlerde yaygın olarak kullanılan termoset malzeme bazlı kompozitler, üretim kısıtlamaları ve geri dönüşüm eksikliği nedeniyle binek araçların üretiminde yer bulamamıştır. Seri üretime uygun olarak üretilen ve aynı mekanik performanslarla geri dönüştürülen sürekli elyaf takviyeli termoplastik kompozitler, otomotiv sektöründe artan uygulamalar bulmaktadır. Bu çalışmada, araçlarda metal akü taşıyıcı kısmı yerine sürekli elyaf takviyeli termoplastik kompozit akü taşıyıcı geliştirilmiştir. Bu çalışmada; yapısal olan taşıyıcı çelik bir akü taşıyıcı, hafifletme amaçlı sürekli elyaf takviyeli termoplastik kompozit malzemelere uygun olarak tasarlanmış, sanal analizleri yapılarak üretilmiş ve araç başına 0.5 kg ağırlık azaltımı sağlanmıştır. Tasarım aşamasından itibaren parça için detaylı güvenlik, doğal frekans ve aşırı yükleme analizleri yapılarak meydana gelen yüksek gerinim değerlerini azaltmak için iyileştirmeler yapılmıştır.

Thanks

Bu çalışma TÜBİTAK (Türkiye Bilimsel ve Teknik Araştırma Kurumu) tarafından 3140681 Proje Numarası ile desteklenmiştir. Proje boyunca sağladığı finansal destek için TÜBİTAK'a teşekkür ederiz.

References

  • Abramovich, H., 2017. Introduction to Composite Materials. Stability and Vibrations of Thin Walled Composite Structures, 1-47.
  • Bonefeld, D., Obermann, C., 2012. A Hybrid Technique for Serial Production of 3D Parts of Continuous Fiber Reinforced Thermoplastics. ECCM15 - 15TH European Conference on Composite Materials, Venice.
  • Chawla, K. K., Meyers, M. A., 1999. Mechanical Behavior of Materials. Cambridge University Press 2017, 651-673.
  • Dings J, 2012. How Clean Are Europe's Cars?. An Analysis of Carmaker Progress Towards EU CO2 Targets In 2011, 6-9, http://www.transportenvironment.org/ European Federation for Transport and Environment.
  • Dittmar H., Plaggenborg H., 2019, Lightweight Vehicle Underbody Design. Reinforced Plastics, 63, 29-32.
  • European Environment Agency., 2018. Monitoring CO2 Emissions from New Passenger Cars and Vans in 2017. EEA Technical Report, 15, 1-35.
  • Fan, J., Njuguna, J., 2016. An Introduction to Lightweight Composite Materials and Their Use in Transport Structures. Lightweight Composite Structures in Transport, Design, Manufacturing, Analysis and Performance, 3-34.
  • Kazan, H., 2019. Hybrid Single Shot Manufacturing of MultiMaterials Structure for Automotive Applications. Phd Thesis of Clemson University.
  • Mazumdar, S. K., 2001. Composites Manufacturing: Materials, Product, and Process Engineering, 1-17.
  • RCAR, Research Council for Automobile Repairs.
  • Regulation No.94. Uniform Prvisions Concerning the Approval of Vehicles with Regard to the Protection of the Occupants in the Event of a Frontal Collision.
  • Rietman B., Boxus E., Muhammad K. S., Verghes, N., 2016. Manufacturing Solutions for Hybrid Overmolded Thermoplastic Ud Composites, 3-4.
  • Schijve W., Kulkarni S., 2016. New Thermoplastic Composite Solutions Present Viable Options for Automotive Lightweighting
  • Sherman, L. M., 2012. The New Lightweights: Injection Molded 'Hybrid' Composites Spur Auto Innovation.
  • https://www.ptonline.com/articles/the-new-lightweights-injection-molded-hybrid-composites-spur-automotive-innovation
  • Swift, T. K., Moore, M., Sanchez, E., 2015. Plastics and Polymer Composites in Light Vehicles. Economics and Statistics Department/American Chemistry Council.
  • Yaldiz R., Schijve W, Muhammad K. S., 2016. Innovative Predictive Solutions for Hybrid Thermoplastic Composite Technology. 16th SPE Automotive Composites Conference, Sept. 2016, Novi, MI, USA.

DEVELOPMENT OF A CONTINUOUS FIBER THERMOPLASTIC COMPOSITE BATTERY CARRIER BY USING OVERMOLDING PRODUCTION TECHNOLOGY

Year 2020, , 1223 - 1235, 25.12.2020
https://doi.org/10.21923/jesd.710486

Abstract

In the last ten years, the problem of vehicle lightening has become the most crucial research topic in the automotive sector. Reducing the weight of all vehicle components, while keeping costs under control for fuel consumption and performance improvements, leads to innovative solutions for vehicle lightening. The use of polymer composite materials to reduce the use of steel instead of steel in vehicle lightening studies is noteworthy. Thermoset materials-based composites, which are widely used in different sectors, have not been able to find a place in the production of passenger vehicles due to production constraints and lack of recycling. Continuous fiber-reinforced thermoplastic composites, which are produced in accordance with mass production and are recycled with the same mechanical performances, are finding increasing applications in the automotive sector. In this study, continuous fiber-reinforced thermoplastic composites battery carrier will be developed in vehicles instead of the steel battery carrier part. The detailed mechanical analysis will be performed for the part from the design phase, and part will be formed by an injection-based thermoform production method. From the design phase, detailed safety, natural frequency and overload analyzes have been made for the part and improvements have been made to reduce the high strain values that occur.

References

  • Abramovich, H., 2017. Introduction to Composite Materials. Stability and Vibrations of Thin Walled Composite Structures, 1-47.
  • Bonefeld, D., Obermann, C., 2012. A Hybrid Technique for Serial Production of 3D Parts of Continuous Fiber Reinforced Thermoplastics. ECCM15 - 15TH European Conference on Composite Materials, Venice.
  • Chawla, K. K., Meyers, M. A., 1999. Mechanical Behavior of Materials. Cambridge University Press 2017, 651-673.
  • Dings J, 2012. How Clean Are Europe's Cars?. An Analysis of Carmaker Progress Towards EU CO2 Targets In 2011, 6-9, http://www.transportenvironment.org/ European Federation for Transport and Environment.
  • Dittmar H., Plaggenborg H., 2019, Lightweight Vehicle Underbody Design. Reinforced Plastics, 63, 29-32.
  • European Environment Agency., 2018. Monitoring CO2 Emissions from New Passenger Cars and Vans in 2017. EEA Technical Report, 15, 1-35.
  • Fan, J., Njuguna, J., 2016. An Introduction to Lightweight Composite Materials and Their Use in Transport Structures. Lightweight Composite Structures in Transport, Design, Manufacturing, Analysis and Performance, 3-34.
  • Kazan, H., 2019. Hybrid Single Shot Manufacturing of MultiMaterials Structure for Automotive Applications. Phd Thesis of Clemson University.
  • Mazumdar, S. K., 2001. Composites Manufacturing: Materials, Product, and Process Engineering, 1-17.
  • RCAR, Research Council for Automobile Repairs.
  • Regulation No.94. Uniform Prvisions Concerning the Approval of Vehicles with Regard to the Protection of the Occupants in the Event of a Frontal Collision.
  • Rietman B., Boxus E., Muhammad K. S., Verghes, N., 2016. Manufacturing Solutions for Hybrid Overmolded Thermoplastic Ud Composites, 3-4.
  • Schijve W., Kulkarni S., 2016. New Thermoplastic Composite Solutions Present Viable Options for Automotive Lightweighting
  • Sherman, L. M., 2012. The New Lightweights: Injection Molded 'Hybrid' Composites Spur Auto Innovation.
  • https://www.ptonline.com/articles/the-new-lightweights-injection-molded-hybrid-composites-spur-automotive-innovation
  • Swift, T. K., Moore, M., Sanchez, E., 2015. Plastics and Polymer Composites in Light Vehicles. Economics and Statistics Department/American Chemistry Council.
  • Yaldiz R., Schijve W, Muhammad K. S., 2016. Innovative Predictive Solutions for Hybrid Thermoplastic Composite Technology. 16th SPE Automotive Composites Conference, Sept. 2016, Novi, MI, USA.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Ayça Küçükoğlu 0000-0002-1053-6138

Gökçe Özyapı This is me 0000-0002-2398-5653

Atanur Acar This is me 0000-0002-0945-0003

Ali Ozan Bağrıyanık 0000-0002-8512-3450

Osman Çolpan 0000-0003-0979-2799

Hafize Çelik This is me 0000-0001-7572-073X

Yavuz Emre Yağcı 0000-0003-0754-5540

Publication Date December 25, 2020
Submission Date April 19, 2020
Acceptance Date December 6, 2020
Published in Issue Year 2020

Cite

APA Küçükoğlu, A., Özyapı, G., Acar, A., Bağrıyanık, A. O., et al. (2020). ÇOK BİLEŞENLİ KALIPLAMA YÖNTEMİNE UYGUN SÜREKLİ ELYAFLI TERMOPLASTİK KOMPOZİT AKÜ TAŞIYICI PARÇASININ GELİŞTİRİLMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(4), 1223-1235. https://doi.org/10.21923/jesd.710486