Research Article
BibTex RIS Cite

HAYVANSAL VE BİTKİSEL ATIKLAR KAYNAKLI BİYOKÖMÜR ÜRETİM POTANSİYELİNİN BELİRLENMESİ: MALATYA İLİ ÖRNEĞİ

Year 2020, , 720 - 727, 24.09.2020
https://doi.org/10.21923/jesd.719371

Abstract

Araştırmada, Malatya ilinin hayvansal ve bitkisel atıklar kaynaklı biyokömür dönüşüm potansiyeli belirlenmiştir. Çalışma kapsamında, Türkiye İstatistik Kurumu'nun 2019, 2018 ve 2017 yılı Hayvancılık İstatistikleri ve Bitkisel Üretim İstatistikleri kullanılmıştır. Biyokömür üretim potansiyelinin belirlenmesinde hayvan (büyükbaş süt sığırları, küçükbaş süt veren koyun+keçi ve hindi+kaz+ördek+yumurta tavuğu kümes hayvanı) sayıları ve bahçe ürünleri (kayısı, elma, ceviz, armut, badem, kiraz, şeftali+nektarin, vişne, erik) ağaç sayıları dikkate alınarak, ilgili kabullere göre atık miktarları saptanmıştır. Diğer hayvansal ve bitkisel üretim atıkları, genel olarak sürdürülebilir olmadığından biyokömür dönüşüm potansiyelinin belirlenmesinde dikkate alınmamıştır. Toplam biyokömür dönüşüm potansiyeli üç yıl için 132319 ton ve yıl bazında ortalama 44106.3 ton olarak belirlenmiştir. 2019, 2018 ve 2017 yılı için; hayvansal atık kaynaklı biyokömür potansiyeli, toplam potansiyelin % 72.4'ünü ve bahçe ürünleri budama atıkları kaynaklı biyokömür potansiyeli ise toplam potansiyelin % 27.6'sını oluşturmuştur. Bu oranlar, yıl bazında da yaklaşık oranlarda seyretmiştir. Ayrıca, hayvansal atık kaynaklarının % 87’sini büyükbaş hayvan atıkları ve bahçe ürünleri budama atık kaynaklarının % 88'ini ise kayısı ağacı budama atıkları oluşturmuştur.

References

  • Agronomy Fact Sheet: Biochar, 2010. Garden Gate University.
  • Bilandzija, N., Voca, N., Kricka, T., Matin, A., Jurisic, V., 2012. Energy potential of fruit tree pruned biomass in Croatia. Spanish Journal of Agricultural Research, 10 (2), 292-298.
  • CEC February, 2019. Modular Biomass Power Systems to Facilitate Forest Fuel Reduction Treatment. Energy Research and Development Division, Final Project Report, CEC-500-2019-019.
  • CEC April, 2019. Accelerating Drought Resilience Through Innovative Technologies. Energy Research and Development Division, Final Project Report, CEC-500-2019-037.
  • Chaiwong, K., Kiatsiriroat, T., Vorayos, N., Thararax, C., 2012. Biochar production from freshwater algae by slow pyrolysis. Maejo International Journal of Science and Technology, 6 (2), 186-195.
  • Colantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D., 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renewable and Sustainable Energy Reviews, 64, 187-194.
  • Çevre Kanunu. Kanun Numarası: 2872. Kabul Tarihi: 09.08.1983. Resmi Gazetede Yayımlanma Tarihi: 11.08.1983. Sayı:18132, Cilt: 22, 5909-5920.
  • Gheorghe, C.B., Mărculescu, C., Badea, A., Apostol, T., 2010. Pyrolysis Parameters Influencing the Bio-Char Generation from Wooden Biomass. U.P.B. Sci. Bull., Series C, 72 (1), 29-38.
  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92, 223-228.
  • International Energy Agency (IEA) Bioenergy, 2006. Biomass Pyrolysis. Annual Report.
  • Jia, X., Wang, M., Yuan, W., Ju, X., Yang, B., 2016. The influence of biochar addition on chicken manure composting and associated methane and carbon dioxide emissions. BioResources, 11 (2), 5255-5264.
  • Kaygusuz, K., 2001. Hydropower and Biomass as Renewable Energy Sources in Turkey. Energy Sources, 23 (9), 775-799.
  • Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y-K., Jung, J., Hyun, S., 2013. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 0C. Bioresource Technology, 148, 196-201.
  • Lehmann, J., Kuzyakov, Y., Pan, G., Ok, Y.S., 2015. Biochars and the plant-soil interface. Plant Soil, 395, 1-5.
  • LIFE 03 TCY/TR/000061. A Guide on Exploitation of Agricultural Residues in Turkey. Exploitation of Agricultural Residues in Turkey, EU-Life Programme Project, Final Report ANNEX XIV, 686-761.
  • Llorach-Massana, P., Lopez-Capel, E., Peña, J., Rieradevall, J., Montero, J.I., Puy, N., 2017. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue. Waste Management, 67, 121-130.
  • Mitchell, P.J., Dalley, T.S.L., Helleur, R.J., 2013. Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. Journal of Analytical and Applied Pyrolysis, 99, 71-78.
  • Navia, R., Crowley, D.E., 2010. Closing the loop on organic waste management: biochar for agricultural land application and climate change mitigation. Waste Management & Research, 28 (6), 479-480.
  • Oomori, S., Toma, Y., Nagata, O., Ueno, H., 2016. Effects of bamboo biochar application on global warming in paddy fields in Ehime prefecture, Southern Japan. Soil Science and Plant Nutrition, 62 (5–6), 553-560.
  • Shackley, S., Sohi, S., Ibarrola, R., Hammond, J., Mašek, O., Brownsort, P., Cross, A., Prendergast-Miller, M., Haszldine, S., 2013. Biochar, Tool for Climate Change Mitigation and Soil Management. Geoengineering Response to Climate Change: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Springer New York, 73-140.
  • Song, W., Guo, M., 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
  • Sümer, S.K., Kavdır, Y., Çiçek, G., 2016. Türkiye’de Tarımsal ve Hayvansal Atıklardan Biyokömür Üretim Potansiyelinin Belirlenmesi. KSÜ Doğa Bilimleri Dergisi, 19 (4), 379-387.
  • TÜİK, 2020. Veritabanları, Tarım. http://www.tuik.gov.tr/PreTabloArama.do. (Erişim Tarihi:28.02.2020).
  • Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara, E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27, 205-212.
  • Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., Xing, B., 2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 174, 289-296.
  • Winsley, P., 2007. Biochar and bioenergy production for climate change mitigation. New Zealand Science Review, 64 (1), 5-10.
  • Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Munoz, M.A., Faz, A., 2016. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere, 144, 122-130.

DETERMINATION OF ANIMAL AND VEGETABLE WASTES-BASED BIOCHAR PRODUCTION POTENTIAL: THE CASE OF MALATYA PROVINCE

Year 2020, , 720 - 727, 24.09.2020
https://doi.org/10.21923/jesd.719371

Abstract

In the research, animal and vegetable waste-based biochar transformation potential of Malatya province was determined. Within the scope of the study, Livestock Statistics and Plant Production Statistics of the years 2019, 2018 and 2017 from the Turkish Statistical Institute were used. In the determination of the biochar production potential, the number of animals (dairy cattle, milk giving sheep+goat and turkey+goose+duck+laying hen poultry) and the number of horticultural crop trees (apricot, apple, walnut, pear, almond, cherry, peach+nectarine, sour cherry, plum) were considered and waste amounts were detected according to the relevant acceptances. Other animal and vegetable production wastes were not taken into consideration in determining biochar transformation potential since they are not generally sustainable. Total biochar transformation potential was determined as 132319 tons for three years and 44106.3 tons on the average on a yearly basis. For the years 2019, 2018 and 2017; animal waste-based biochar potential created 72.4% of the total potential and horticultural crop pruning waste-based biochar potential created 27.6% of the total potential. These rates ranged between the approximate rates on a yearly basis. Also, 87% of the animal waste sources consisted of bovine animal wastes and 88% of the horticultural crop pruning waste sources consisted of apricot tree pruning wastes.

References

  • Agronomy Fact Sheet: Biochar, 2010. Garden Gate University.
  • Bilandzija, N., Voca, N., Kricka, T., Matin, A., Jurisic, V., 2012. Energy potential of fruit tree pruned biomass in Croatia. Spanish Journal of Agricultural Research, 10 (2), 292-298.
  • CEC February, 2019. Modular Biomass Power Systems to Facilitate Forest Fuel Reduction Treatment. Energy Research and Development Division, Final Project Report, CEC-500-2019-019.
  • CEC April, 2019. Accelerating Drought Resilience Through Innovative Technologies. Energy Research and Development Division, Final Project Report, CEC-500-2019-037.
  • Chaiwong, K., Kiatsiriroat, T., Vorayos, N., Thararax, C., 2012. Biochar production from freshwater algae by slow pyrolysis. Maejo International Journal of Science and Technology, 6 (2), 186-195.
  • Colantoni, A., Evic, N., Lord, R., Retschitzegger, S., Proto, A.R., Gallucci, F., Monarca, D., 2016. Characterization of biochars produced from pyrolysis of pelletized agricultural residues. Renewable and Sustainable Energy Reviews, 64, 187-194.
  • Çevre Kanunu. Kanun Numarası: 2872. Kabul Tarihi: 09.08.1983. Resmi Gazetede Yayımlanma Tarihi: 11.08.1983. Sayı:18132, Cilt: 22, 5909-5920.
  • Gheorghe, C.B., Mărculescu, C., Badea, A., Apostol, T., 2010. Pyrolysis Parameters Influencing the Bio-Char Generation from Wooden Biomass. U.P.B. Sci. Bull., Series C, 72 (1), 29-38.
  • Hossain, M.K., Strezov, V., Chan, K.Y., Ziolkowski, A., Nelson, P.F., 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92, 223-228.
  • International Energy Agency (IEA) Bioenergy, 2006. Biomass Pyrolysis. Annual Report.
  • Jia, X., Wang, M., Yuan, W., Ju, X., Yang, B., 2016. The influence of biochar addition on chicken manure composting and associated methane and carbon dioxide emissions. BioResources, 11 (2), 5255-5264.
  • Kaygusuz, K., 2001. Hydropower and Biomass as Renewable Energy Sources in Turkey. Energy Sources, 23 (9), 775-799.
  • Lee, Y., Park, J., Ryu, C., Gang, K.S., Yang, W., Park, Y-K., Jung, J., Hyun, S., 2013. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 0C. Bioresource Technology, 148, 196-201.
  • Lehmann, J., Kuzyakov, Y., Pan, G., Ok, Y.S., 2015. Biochars and the plant-soil interface. Plant Soil, 395, 1-5.
  • LIFE 03 TCY/TR/000061. A Guide on Exploitation of Agricultural Residues in Turkey. Exploitation of Agricultural Residues in Turkey, EU-Life Programme Project, Final Report ANNEX XIV, 686-761.
  • Llorach-Massana, P., Lopez-Capel, E., Peña, J., Rieradevall, J., Montero, J.I., Puy, N., 2017. Technical feasibility and carbon footprint of biochar co-production with tomato plant residue. Waste Management, 67, 121-130.
  • Mitchell, P.J., Dalley, T.S.L., Helleur, R.J., 2013. Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. Journal of Analytical and Applied Pyrolysis, 99, 71-78.
  • Navia, R., Crowley, D.E., 2010. Closing the loop on organic waste management: biochar for agricultural land application and climate change mitigation. Waste Management & Research, 28 (6), 479-480.
  • Oomori, S., Toma, Y., Nagata, O., Ueno, H., 2016. Effects of bamboo biochar application on global warming in paddy fields in Ehime prefecture, Southern Japan. Soil Science and Plant Nutrition, 62 (5–6), 553-560.
  • Shackley, S., Sohi, S., Ibarrola, R., Hammond, J., Mašek, O., Brownsort, P., Cross, A., Prendergast-Miller, M., Haszldine, S., 2013. Biochar, Tool for Climate Change Mitigation and Soil Management. Geoengineering Response to Climate Change: Selected Entries from the Encyclopedia of Sustainability Science and Technology, Springer New York, 73-140.
  • Song, W., Guo, M., 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
  • Sümer, S.K., Kavdır, Y., Çiçek, G., 2016. Türkiye’de Tarımsal ve Hayvansal Atıklardan Biyokömür Üretim Potansiyelinin Belirlenmesi. KSÜ Doğa Bilimleri Dergisi, 19 (4), 379-387.
  • TÜİK, 2020. Veritabanları, Tarım. http://www.tuik.gov.tr/PreTabloArama.do. (Erişim Tarihi:28.02.2020).
  • Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara, E., 2011. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27, 205-212.
  • Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., Xing, B., 2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental Pollution, 174, 289-296.
  • Winsley, P., 2007. Biochar and bioenergy production for climate change mitigation. New Zealand Science Review, 64 (1), 5-10.
  • Zornoza, R., Moreno-Barriga, F., Acosta, J.A., Munoz, M.A., Faz, A., 2016. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere, 144, 122-130.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Nesrin Dursun 0000-0002-7463-1038

Publication Date September 24, 2020
Submission Date April 13, 2020
Acceptance Date July 7, 2020
Published in Issue Year 2020

Cite

APA Dursun, N. (2020). HAYVANSAL VE BİTKİSEL ATIKLAR KAYNAKLI BİYOKÖMÜR ÜRETİM POTANSİYELİNİN BELİRLENMESİ: MALATYA İLİ ÖRNEĞİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(3), 720-727. https://doi.org/10.21923/jesd.719371