Research Article
BibTex RIS Cite

PORSELEN KARO YÜZEY MODİFİKASYONU

Year 2021, , 240 - 254, 30.03.2021
https://doi.org/10.21923/jesd.768493

Abstract

Su damlasının üzerinde 90o’den büyük açı yaptığı yüzeyler hidrofobik yüzeyler olarak adlandırılır. Hidrofobik yüzeyler özellikle hijyen gerektiren ortamlarda yaygın olarak kullanılmaktadır. Yapılan çalışmada endüstriyel porselen karo yüzeyinde hidrofobik yüzey özelliğinin alkol ve su bazlı iki farklı türde polimer kaplama yapılması ve kendinden hidrofobik özelliğe sahip çinko oksit tozu ile ticari porselen karo sırının modifiye edilmesiyle eldesi amaçlanmıştır. Yüzeylerin morfolojik gelişimi taramalı elektron mikroskobu ile incelenmiş ve faz gelişimi
X-ışınları difraksiyon cihazı ile belirlenmiştir. Temas açısı gonyometresi kullanılarak polimer kaplanmamış ve alkol ve su bazlı polimer ile kaplanmış yüzeylerin temas açıları ölçülüp, kıyaslanmıştır. Sonuç olarak alkol bazlı polimer ile kaplanmış yüzeylerin su bazlı polimer ile kaplanmış yüzeylere göre daha iyi hidrofobik etki gösterdiği tespit edilmiştir. Mikron boyutunda çinko oksit ilavesi yapılan sır kompozisyonlarının endüstriyel fırında pişirim sonrasında willemit (Zn2SiO4) fazı gelişimi gözlenirken, nano boyutta çinko oksit kullanımı zinsit fazı (ZnO) gelişimini sağlamıştır. Nano çinko oksit modifiyeli sırlarda yüzeyde çatlak oluşumu yüzeyin su emmesini sağladığından kaplanmamış yüzeylerin temas açısı ölçümü gerçekleştirilememiştir. Polimer kaplama sonrası en yüksek temas açısı 139o olarak N2 kodlu sır kompozisyonunda elde edilmiştir.

Supporting Institution

Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

2019-01.BŞEÜ.03-01

Thanks

Laboratuvar çalışmalarının gerçekleşmesinde katkı sağlayan Seranit Grup Ar-Ge Merkezi ve Seramik Araştırma Merkezi’ne destekleri için teşekkür ederiz. Yapılan çalışma Bilecik Şeyh Edebali Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından 2019-01.BŞEÜ.03-01 nolu proje ile desteklenmektedir.

References

  • Abadir, M. F., Sallam, E. H., & Bakr, I. M., 2002. Preparation of porcelain tiles from Egyptian raw materials. Ceramics International, 28(3), 303-310.
  • Acchar W., Dultra E.J.V., 2015. Porcelain Tile. In: Ceramic Materials from Coffee Bagasse Ash Waste. Springer Briefs in Applied Sciences and Technology. Springer, Cham
  • Açıkbaş, G., Suvacı E and Kara, F., 2008. Sır Yüzeyinde Uçucu Organik İlavelerle Morfoloji Eldesi. Uluslararası Katılımlı VII. Seramik Kongresi, 280-288, Afyon, Türkiye.
  • Açıkbaş, G., 2007. Seramik Yüzeylerde Mikromorfoloji Oluşturulması. Yüksek Lisans Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Açıkbaş, G., Özcan S. and Çalış Açıkbaş, N., 2014. Formation of Superhydrophobic Character on Ceramic Surfaces, 2nd International Symposium on Innovative Technologies in Engineering and Science, 606-613.
  • Alves, H. J., Melchiades, F. G., & Boschi, A. O., 2012. Effect of feldspar particle size on the porous microstructure and stain resistance of polished porcelain tiles. Journal of the European Ceramic Society, 32(10), 2095-2102.
  • Beltrán, V., Ferrer, C., Bagán, V., Sánchez, E., Garcia, J., & Mestre, S., 1996. Influence of pressing powder characteristics and firing temperature on the porous microstructure and stain resistance of porcelain tile. In Qualicer 96. IV World Congress on Ceramic Tile Quality. General Conferences and Communications. Pt. 1. Castellon (Vol. 10, No. 13).
  • Bresciani, A., Graziani, G. P., & Ricci, C. 2002. New glazed porcelain tile manufacturing technology: pre-pressing, dry decoration and green cutting. Qualicer. 255-270.
  • Çalış Açıkbaş N., Açıkbaş, G., Özcan, S. A method for obtaining superhydrophobic surfaces by means of inorganic surface modification, Section C - Chemistry; Metallurgy, TR 2015 03257 B, (2017).
  • De Noni Jr, A., Hotza, D., Soler, V. C., & Vilches, E. S., 2010. Influence of composition on mechanical behaviour of porcelain tile. Part I: Microstructural characterization and developed phases after firing. Materials Science and Engineering: A, 527(7-8), 1730-1735.
  • Dondi, M., Ercolani, G., Guarini, G., Melandri, C., Raimondo, M., e Almendra, E. R., & Cavalcante, P. T., 2005. The role of surface microstructure on the resistance to stains of porcelain stoneware tiles. Journal of the European Ceramic Society, 25(4), 357-365.
  • Hasmaliza, M., Foo, H. S., & Mohd, K., 2016. Anatase as antibacterial material in ceramic tiles. Procedia chemistry, 19, 828-834.
  • Hupa, L., Bergman, R., Fröberg, L., Vane-Tempest, S., Hupa, M., Kronberg, T., ... & Sjöberg, A. M., 2005. Chemical resistance and cleanability of glazed surfaces. Surface science, 584(1), 113-118.
  • Junior, A. D. N., Hotza, D., Soler, V. C., & Vilches, E. S., 2011. Influence of composition on mechanical behaviour of porcelain tile. Part III: Effect of the cooling rate of the firing cycle. Materials Science and Engineering: A, 528(9), 3330-3336
  • Junior, A. D. N., Hotza, D., Soler, V. C., & Vilches, E. S., 2009. Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates. Journal of the European Ceramic Society, 29(6), 1039-1046.
  • Junior, A. D. N., Hotza, D., Soler, V. C., & Vilches, E. S., 2010. Influence of composition on mechanical behaviour of porcelain tile. Part II: Mechanical properties and microscopic residual stress. Materials Science and Engineering: A, 527(7-8), 1736-1743.
  • Karasu, B., Sarıcaoğlu, B., 2019. Aventurin Sırlarına Genel Bir Bakış. El-Cezerî Fen ve Mühendislik Dergisi. 6(1), 140-155.
  • Kaya, G., Karasu, B., & Cakir, A., 2011. Characterisation of diopside-based glass-ceramic porcelain tile glazes containing borax solid wastes. Journal of Ceramic Processing Research, 12(2), 135-139.
  • Kuisma, R., Fröberg, L., Kymäläinen, H. R., Pesonen-Leinonen, E., Piispanen, M., Melamies, P., ... & Hupa, L., 2007. Microstructure and cleanability of uncoated and fluoropolymer, zirconia and titania coated ceramic glazed surfaces. Journal of the European Ceramic Society, 27(1), 101-108.
  • Lanka, S., Alexandrova, E., Kozhukhova, M., Hasan, M. S., Nosonovsky, M., & Sobolev, K., 2019. Tribological and wetting properties of TiO2 based hydrophobic coatings for ceramics. Journal of Tribology, 141(10).
  • Määttä, J., Piispanen, M., Kuisma, R., Kymäläinen, H. R., Uusi-Rauva, A., Hurme, K. R., & Hupa, L., 2007. Effect of coating on cleanability of glazed surfaces. Journal of the European Ceramic Society, 27(16), 4555-4560.
  • Mazzanti, B., Rambaldi, E., & Prete, F., 2014. Chemical etching as anti-slip treatment on porcelain stoneware tiles. Proceedings of XIII Qualicer, Castellon, 17-18.
  • Neinhuis, C. and Barthlott, W., 1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Botany, 79, 667-677.
  • Özcan, S., Açıkbaş, G., & Çalış Açıkbaş, N., 2018. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces. Applied Surface Science, 438, 136-146.
  • Piispanen, M., Määttä, J., Areva, S., Sjöberg, A. M., Hupa, M., & Hupa, L., 2009. Chemical resistance and cleaning properties of coated glazed surfaces. Journal of the European Ceramic Society, 29(10), 1855-1860.
  • Prochazka, J. (2007). U.S. Patent Application No. 10/571,981.
  • Reinosa, J. J., Romero, J. J., Jaquotot, P., Bengochea, M. A., & Fernández, J. F., 2012. Copper based hydrophobic ceramic nanocoating. Journal of the European Ceramic Society, 32(2), 277-282.
  • Reinosa, J. J., Romero, J. J., Miguel, A., del Campo, A., & Fernández, J. F., 2013. Inorganic hydrophobic coatings: surfaces mimicking the nature. Ceramics International, 39(3), 2489-2495.
  • Rincón, R. J., Benet, M. P., Juárez, J., Cabezón, C., Pedra, J. M., Carda, J. B., & Martínez, J., 2008. Development of glass-ceramic glazes with anti-slip properties for porcelain tiles. Qualicer, 1, 331-344.
  • Sánchez, E., 2003. Technical considerations on porcelain tile products and their manufacturing process. Interceram, 52(1), 6-15.
  • Sánchez, E., Ibanez, M. J., García-Ten, J., Quereda, M. F., Hutchings, I. M., & Xu, Y. M., 2006. Porcelain tile microstructure: implications for polished tile properties. Journal of the European Ceramic Society, 26(13), 2533-2540.
  • Sánchez, E., García-Ten, J., Sanz, V., & Moreno, A., 2010. Porcelain tile: almost 30 years of steady scientific-technological evolution. Ceramics International, 36(3), 831-845.
  • Sciancalepore, C., Manfredini, T., & Bondioli, F., 2014. Antibacterial and self-cleaning coatings for silicate ceramics: a review. In Advances in Science and Technology (Vol. 92, pp. 90-99). Trans Tech Publications Ltd.
  • Selli, N. T., & Tunali, A., 2013. Comparison of the Performance of Newly Developed Hydrophobic Coatings With Trade One. Polymers and Polymer Composites, 21(3), 193-194.
  • Suvaci, E., & Tamsu, N., 2010. The role of viscosity on microstructure development and stain resistance in porcelain stoneware tiles. Journal of the European Ceramic Society, 30(15), 3071-3077.
  • Tanisan, B., & Turan, S., 2011. Black ceramic pigments for porcelain tile bodies produced with chromite ores and iron oxide waste. Journal of Ceramic Processing Research, 12(4), 462-467.
  • Tarhan, B., Tarhan, M., & Aydin, T., 2017. Reusing sanitaryware waste products in glazed porcelain tile production. Ceramics International, 43(3), 3107-3112.
  • Tucci, A., Esposito, L., Malmusi, L., & Piccinini, A., 2002. Wear resistance and stain resistance of porcelain stoneware tiles. Key Engineering Ceramics, 206, 1759-1762.
  • Tunali, A., & Selli, N. T., 2013. Industrial Plant Application of Hydrophobic Coating on Tile Surface. Polymers and Polymer Composites, 21(3), 157-160.
  • Van Der, P. E., 1934. U.S. Patent No. 1,949,517. Washington, DC: U.S. Patent and Trademark Office.
  • Vermol, V. V., Kamsah, K., Hassan, O. H., & Anwar, R., 2011. A study on porcelain anti slip tile design. In 2011 IEEE Colloquium on Humanities, Science and Engineering (pp. 121-124). IEEE.
  • Wu, X., Zheng, L., & Wu, D., 2005. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-c

PORCELAIN TILE SURFACE MODIFICATION

Year 2021, , 240 - 254, 30.03.2021
https://doi.org/10.21923/jesd.768493

Abstract

The contact angle of the water droplet exceeds 90 degrees; surfaces are called as hydrophobic. Hydrophobic surfaces are widely used especially in hygienic environments. In the study, it was aimed to obtain the hydrophobic surface on the industrial porcelain tile surface by making two different types of polymer coating based on alcohol and water and modifying the commercially porcelain tile glaze with self-hydrophobic zinc oxide. Morphological development of the surfaces was examined by SEM and phase development was determined by XRD. The contact angle of the polymer coated and uncoated surfaces were measured with contact angle goniometer and the results compared. As a result, it has been found that surfaces coated with alcohol-based polymer have a better hydrophobic effect than surfaces coated with water-based polymer. After industrial firing of glaze compositions with the addition of micron-sized zinc oxide willemite phase was observed while the use of nano-size zinc oxide provided the development of zincite phase. The cracking was observed on the nano zinc oxide modified glaze surfaces which allow the surface to absorb water, so the contact angle couldn’t be measured of uncoated surfaces. The highest contact angle after polymer coating was obtained as 139o in N2 glaze composition.

Project Number

2019-01.BŞEÜ.03-01

References

  • Abadir, M. F., Sallam, E. H., & Bakr, I. M., 2002. Preparation of porcelain tiles from Egyptian raw materials. Ceramics International, 28(3), 303-310.
  • Acchar W., Dultra E.J.V., 2015. Porcelain Tile. In: Ceramic Materials from Coffee Bagasse Ash Waste. Springer Briefs in Applied Sciences and Technology. Springer, Cham
  • Açıkbaş, G., Suvacı E and Kara, F., 2008. Sır Yüzeyinde Uçucu Organik İlavelerle Morfoloji Eldesi. Uluslararası Katılımlı VII. Seramik Kongresi, 280-288, Afyon, Türkiye.
  • Açıkbaş, G., 2007. Seramik Yüzeylerde Mikromorfoloji Oluşturulması. Yüksek Lisans Tezi, Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir.
  • Açıkbaş, G., Özcan S. and Çalış Açıkbaş, N., 2014. Formation of Superhydrophobic Character on Ceramic Surfaces, 2nd International Symposium on Innovative Technologies in Engineering and Science, 606-613.
  • Alves, H. J., Melchiades, F. G., & Boschi, A. O., 2012. Effect of feldspar particle size on the porous microstructure and stain resistance of polished porcelain tiles. Journal of the European Ceramic Society, 32(10), 2095-2102.
  • Beltrán, V., Ferrer, C., Bagán, V., Sánchez, E., Garcia, J., & Mestre, S., 1996. Influence of pressing powder characteristics and firing temperature on the porous microstructure and stain resistance of porcelain tile. In Qualicer 96. IV World Congress on Ceramic Tile Quality. General Conferences and Communications. Pt. 1. Castellon (Vol. 10, No. 13).
  • Bresciani, A., Graziani, G. P., & Ricci, C. 2002. New glazed porcelain tile manufacturing technology: pre-pressing, dry decoration and green cutting. Qualicer. 255-270.
  • Çalış Açıkbaş N., Açıkbaş, G., Özcan, S. A method for obtaining superhydrophobic surfaces by means of inorganic surface modification, Section C - Chemistry; Metallurgy, TR 2015 03257 B, (2017).
  • De Noni Jr, A., Hotza, D., Soler, V. C., & Vilches, E. S., 2010. Influence of composition on mechanical behaviour of porcelain tile. Part I: Microstructural characterization and developed phases after firing. Materials Science and Engineering: A, 527(7-8), 1730-1735.
  • Dondi, M., Ercolani, G., Guarini, G., Melandri, C., Raimondo, M., e Almendra, E. R., & Cavalcante, P. T., 2005. The role of surface microstructure on the resistance to stains of porcelain stoneware tiles. Journal of the European Ceramic Society, 25(4), 357-365.
  • Hasmaliza, M., Foo, H. S., & Mohd, K., 2016. Anatase as antibacterial material in ceramic tiles. Procedia chemistry, 19, 828-834.
  • Hupa, L., Bergman, R., Fröberg, L., Vane-Tempest, S., Hupa, M., Kronberg, T., ... & Sjöberg, A. M., 2005. Chemical resistance and cleanability of glazed surfaces. Surface science, 584(1), 113-118.
  • Junior, A. D. N., Hotza, D., Soler, V. C., & Vilches, E. S., 2011. Influence of composition on mechanical behaviour of porcelain tile. Part III: Effect of the cooling rate of the firing cycle. Materials Science and Engineering: A, 528(9), 3330-3336
  • Junior, A. D. N., Hotza, D., Soler, V. C., & Vilches, E. S., 2009. Effect of quartz particle size on the mechanical behaviour of porcelain tile subjected to different cooling rates. Journal of the European Ceramic Society, 29(6), 1039-1046.
  • Junior, A. D. N., Hotza, D., Soler, V. C., & Vilches, E. S., 2010. Influence of composition on mechanical behaviour of porcelain tile. Part II: Mechanical properties and microscopic residual stress. Materials Science and Engineering: A, 527(7-8), 1736-1743.
  • Karasu, B., Sarıcaoğlu, B., 2019. Aventurin Sırlarına Genel Bir Bakış. El-Cezerî Fen ve Mühendislik Dergisi. 6(1), 140-155.
  • Kaya, G., Karasu, B., & Cakir, A., 2011. Characterisation of diopside-based glass-ceramic porcelain tile glazes containing borax solid wastes. Journal of Ceramic Processing Research, 12(2), 135-139.
  • Kuisma, R., Fröberg, L., Kymäläinen, H. R., Pesonen-Leinonen, E., Piispanen, M., Melamies, P., ... & Hupa, L., 2007. Microstructure and cleanability of uncoated and fluoropolymer, zirconia and titania coated ceramic glazed surfaces. Journal of the European Ceramic Society, 27(1), 101-108.
  • Lanka, S., Alexandrova, E., Kozhukhova, M., Hasan, M. S., Nosonovsky, M., & Sobolev, K., 2019. Tribological and wetting properties of TiO2 based hydrophobic coatings for ceramics. Journal of Tribology, 141(10).
  • Määttä, J., Piispanen, M., Kuisma, R., Kymäläinen, H. R., Uusi-Rauva, A., Hurme, K. R., & Hupa, L., 2007. Effect of coating on cleanability of glazed surfaces. Journal of the European Ceramic Society, 27(16), 4555-4560.
  • Mazzanti, B., Rambaldi, E., & Prete, F., 2014. Chemical etching as anti-slip treatment on porcelain stoneware tiles. Proceedings of XIII Qualicer, Castellon, 17-18.
  • Neinhuis, C. and Barthlott, W., 1997. Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Botany, 79, 667-677.
  • Özcan, S., Açıkbaş, G., & Çalış Açıkbaş, N., 2018. Induced superhydrophobic and antimicrobial character of zinc metal modified ceramic wall tile surfaces. Applied Surface Science, 438, 136-146.
  • Piispanen, M., Määttä, J., Areva, S., Sjöberg, A. M., Hupa, M., & Hupa, L., 2009. Chemical resistance and cleaning properties of coated glazed surfaces. Journal of the European Ceramic Society, 29(10), 1855-1860.
  • Prochazka, J. (2007). U.S. Patent Application No. 10/571,981.
  • Reinosa, J. J., Romero, J. J., Jaquotot, P., Bengochea, M. A., & Fernández, J. F., 2012. Copper based hydrophobic ceramic nanocoating. Journal of the European Ceramic Society, 32(2), 277-282.
  • Reinosa, J. J., Romero, J. J., Miguel, A., del Campo, A., & Fernández, J. F., 2013. Inorganic hydrophobic coatings: surfaces mimicking the nature. Ceramics International, 39(3), 2489-2495.
  • Rincón, R. J., Benet, M. P., Juárez, J., Cabezón, C., Pedra, J. M., Carda, J. B., & Martínez, J., 2008. Development of glass-ceramic glazes with anti-slip properties for porcelain tiles. Qualicer, 1, 331-344.
  • Sánchez, E., 2003. Technical considerations on porcelain tile products and their manufacturing process. Interceram, 52(1), 6-15.
  • Sánchez, E., Ibanez, M. J., García-Ten, J., Quereda, M. F., Hutchings, I. M., & Xu, Y. M., 2006. Porcelain tile microstructure: implications for polished tile properties. Journal of the European Ceramic Society, 26(13), 2533-2540.
  • Sánchez, E., García-Ten, J., Sanz, V., & Moreno, A., 2010. Porcelain tile: almost 30 years of steady scientific-technological evolution. Ceramics International, 36(3), 831-845.
  • Sciancalepore, C., Manfredini, T., & Bondioli, F., 2014. Antibacterial and self-cleaning coatings for silicate ceramics: a review. In Advances in Science and Technology (Vol. 92, pp. 90-99). Trans Tech Publications Ltd.
  • Selli, N. T., & Tunali, A., 2013. Comparison of the Performance of Newly Developed Hydrophobic Coatings With Trade One. Polymers and Polymer Composites, 21(3), 193-194.
  • Suvaci, E., & Tamsu, N., 2010. The role of viscosity on microstructure development and stain resistance in porcelain stoneware tiles. Journal of the European Ceramic Society, 30(15), 3071-3077.
  • Tanisan, B., & Turan, S., 2011. Black ceramic pigments for porcelain tile bodies produced with chromite ores and iron oxide waste. Journal of Ceramic Processing Research, 12(4), 462-467.
  • Tarhan, B., Tarhan, M., & Aydin, T., 2017. Reusing sanitaryware waste products in glazed porcelain tile production. Ceramics International, 43(3), 3107-3112.
  • Tucci, A., Esposito, L., Malmusi, L., & Piccinini, A., 2002. Wear resistance and stain resistance of porcelain stoneware tiles. Key Engineering Ceramics, 206, 1759-1762.
  • Tunali, A., & Selli, N. T., 2013. Industrial Plant Application of Hydrophobic Coating on Tile Surface. Polymers and Polymer Composites, 21(3), 157-160.
  • Van Der, P. E., 1934. U.S. Patent No. 1,949,517. Washington, DC: U.S. Patent and Trademark Office.
  • Vermol, V. V., Kamsah, K., Hassan, O. H., & Anwar, R., 2011. A study on porcelain anti slip tile design. In 2011 IEEE Colloquium on Humanities, Science and Engineering (pp. 121-124). IEEE.
  • Wu, X., Zheng, L., & Wu, D., 2005. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-c
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Gökhan Açıkbaş 0000-0002-5695-3658

Mehmet Behlül Kayalı This is me 0000-0003-2503-236X

Nurcan Çaliş Açıkbaş 0000-0001-6193-8252

Project Number 2019-01.BŞEÜ.03-01
Publication Date March 30, 2021
Submission Date July 12, 2020
Acceptance Date January 29, 2021
Published in Issue Year 2021

Cite

APA Açıkbaş, G., Kayalı, M. B., & Açıkbaş, N. Ç. (2021). PORSELEN KARO YÜZEY MODİFİKASYONU. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(1), 240-254. https://doi.org/10.21923/jesd.768493