Research Article
BibTex RIS Cite

PERFORMANCE ANALYSIS AND OPTIMIZATION OF A HELICAL CROSS-FLOW WATER TURBINE

Year 2022, , 605 - 619, 30.06.2022
https://doi.org/10.21923/jesd.816160

Abstract

In this study, a Computational Fluid Dynamics model is designed to investigate the performance analysis of a helical cross-flow water turbine by using Comsol Multiphysics. In order to predict the main performance characteristics of turbine such as power output and torque, a numerical model is developed which is accurate, fast and quite simple to be used for a simulation. The flow field around turbine is solved with the Rotating Machinery feature in the Comsol CFD Module using a k-ω turbulence model and a steady state formulation. The Navier-Stokes equations are used in the model which are arranged in a rotating frame in the inner domain and in fixed coordinates in the outer domain. The boundary between the inner and the outer domain is a continuity boundary condition that transfers momentum to the fluid in the inner domain. This model also uses the Frozen Rotor study type which speeds up the computation time. Then, to increase the performance of the cross-flow water turbine, a new angular velocity profile is explored with Comsol Optimization Module. Thus, a variable speed turbine control method is developed. Compared to the constant velocity control method, new angular velocity control method yielded a 3% increase in the efficiency of turbine.

References

  • Abbott, I.H., Von Doenhoff, A.E., Stivers, L.S., Jr., 1945. Summary of Airfoil Data. NACA Report No.824.
  • Airfoil Tools, 2020. http://airfoiltools.com/airfoil/details?airfoil=naca0018-il.
  • Aksu, H., Korkmaz, M.S., 2019. Türkiye’de Hidrolojik Veri Yönetimi ve Üniversitelerin Katılımı ABD Örneği, Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 699-704.
  • Cavagnaro, B.J., Fabien, B. and Polagye B.L., 2014. Control of A Helical Cross-Flow Current Turbine. Proceedings of the 2nd Marine Energy Technology Symposium, 1–8.
  • Comsol Multiphysics, CFD Module Users Guide, 2018.
  • Comsol Multiphysics, Optimization Module Users Guide, 2018.
  • Güney, M.S., Kaygusuz, K., 2010. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 14(9), 2996–3004.
  • Gorlov, A.M., 1998. Development of the helical reaction hydraulic turbine. Final Technical Report.
  • Gorlov, A.M., 2004. Harnessing power from ocean currents and tides – The helical turbine: Design, characteristics and applications in free flows without dams. Sea Technology, 45(7), 40–43.
  • Khan, M.J., Iqbal, M.T., Quaicoe, J.E., 2006. A technology review and simulation based performance analysis of river current turbine systems. Proceedings of Canadian Conference on Electrical and Computer Engineering, 2288–2293.
  • Khan, M.J., Iqbal, M.T., Quaicoe, J.E., 2008. River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, 12, 2177–2193.
  • Khan, M.J., Bhuyan, G., Iqbal, M.T., Quaicoe, J.E., 2009. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal application: a technology status review. Applied Energy, 86, 1823–1835.
  • Ma, J., Koutsougeras, C., Hao Luo, H., 2016. Efficiency of a Vertical Axis Wind Turbine (VAWT) with Airfoil Pitch Control. Proceedings of Comsol Conference in Boston.
  • Ma, Y., Hu, C., Li, Y., Li, L., Deng, R., Jiang, D., 2018. Hydrodynamic Performance Analysis of the Vertical Axis Twin-Rotor Tidal Current Turbine. Water, 10(11):1964, 1–21.
  • Niblick, A.L., 2012. Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micro power Generation System. MSc. Thesis, University of Washington.
  • Polagye, B.L., Cavagnaro, B.J., Niblick, A.L., 2013. Micropower From Tidal Turbines. Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, 1–11.
  • Özekes, A., 2019. Helisel Dikey Eksen Bir Rüzgar Türbininin Belirli Tasarım Kriterleri Altında Performansının İncelenmesi. MSc Thesis, Manisa Celal Bayar Üniversitesi.
  • Sabuncu, F., Çolakoğlu, M., 2011. Turkey’s Renewable Energy Sector from a Global Perspective. PwC Turkey Report.
  • Strom, B., Brunton, S., Polagye, B., 2017. Intracycle Angular Velocity Control of Cross-Flow Turbines. Nature Energy. 2(17103).
  • Vallet, M.A., Bacha, S., Munteanu, I., Bratcu, A.I., Roye, D., 2011. Management and Control of Operating Regimes of Cross-Flow Water Turbines. IEEE Transactions on Industrial Electronics, 58 (5), 1866–1876.
  • Yang, B.N., Shu, X.W., 2012. Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. Journal of Ocean Engineering, 42, 35–46.

HELİSEL ÇAPRAZ AKIŞLI SU TÜRBİNİNİN PERFORMANS ANALİZİ VE OPTİMİZASYONU

Year 2022, , 605 - 619, 30.06.2022
https://doi.org/10.21923/jesd.816160

Abstract

Bu çalışmada, bir helisel çapraz akışlı su türbininin performans analizini, Comsol Multiphysics kullanılarak incelemek için bir Hesaplamalı Akışkanlar Dinamiği modeli tasarlanmıştır. Bir helisel çapraz akışlı su türbininin güç çıkışı ve tork gibi ana performans özelliklerini tahmin etmek için, simülasyon için kullanılması doğru, hızlı ve oldukça basit olan sayısal bir model geliştirilmiştir. Türbin etrafındaki akış alanı, bir k-ω türbülans modeli ve kararlı durum formülasyonu kullanılarak Comsol CFD Modülündeki Rotating Machinery özelliği ile çözülmüştür. Navier-Stokes denklemleri, iç alanda dönen bir çerçeve içinde ve dış alanda sabit koordinatlarda düzenlenen modelde kullanılmıştır. İç ve dış alan arasındaki sınır koşulu, momentumu iç bölgedeki akışkana aktaran bir süreklilik sınır koşuludur. Bu model ayrıca, bu çalışma için hesaplama süresini önemli ölçüde hızlandıran Frozen Rotor çalışma yöntemini kullanır. Ardından Comsol Optimizasyon Modülü ile çapraz akışlı su türbininin performansını artırmak için yeni bir açısal hız profili araştırılmıştır. Böylece değişken hızlı bir türbin kontrol yöntemi geliştirilmiştir. Bu kontrol yönteminin performansı, sabit açısal hız kontrol yöntemi altında çalışan bir türbin ile karşılaştırılmıştır. Yeni açısal hız kontrol yöntemi türbin veriminde, sabit hız kontrol metodu ile karşılaştırıldığında, %3'lük bir artış sağlamıştır.

References

  • Abbott, I.H., Von Doenhoff, A.E., Stivers, L.S., Jr., 1945. Summary of Airfoil Data. NACA Report No.824.
  • Airfoil Tools, 2020. http://airfoiltools.com/airfoil/details?airfoil=naca0018-il.
  • Aksu, H., Korkmaz, M.S., 2019. Türkiye’de Hidrolojik Veri Yönetimi ve Üniversitelerin Katılımı ABD Örneği, Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 699-704.
  • Cavagnaro, B.J., Fabien, B. and Polagye B.L., 2014. Control of A Helical Cross-Flow Current Turbine. Proceedings of the 2nd Marine Energy Technology Symposium, 1–8.
  • Comsol Multiphysics, CFD Module Users Guide, 2018.
  • Comsol Multiphysics, Optimization Module Users Guide, 2018.
  • Güney, M.S., Kaygusuz, K., 2010. Hydrokinetic energy conversion systems: A technology status review. Renewable and Sustainable Energy Reviews, 14(9), 2996–3004.
  • Gorlov, A.M., 1998. Development of the helical reaction hydraulic turbine. Final Technical Report.
  • Gorlov, A.M., 2004. Harnessing power from ocean currents and tides – The helical turbine: Design, characteristics and applications in free flows without dams. Sea Technology, 45(7), 40–43.
  • Khan, M.J., Iqbal, M.T., Quaicoe, J.E., 2006. A technology review and simulation based performance analysis of river current turbine systems. Proceedings of Canadian Conference on Electrical and Computer Engineering, 2288–2293.
  • Khan, M.J., Iqbal, M.T., Quaicoe, J.E., 2008. River current energy conversion systems: Progress, prospects and challenges. Renewable and Sustainable Energy Reviews, 12, 2177–2193.
  • Khan, M.J., Bhuyan, G., Iqbal, M.T., Quaicoe, J.E., 2009. Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal application: a technology status review. Applied Energy, 86, 1823–1835.
  • Ma, J., Koutsougeras, C., Hao Luo, H., 2016. Efficiency of a Vertical Axis Wind Turbine (VAWT) with Airfoil Pitch Control. Proceedings of Comsol Conference in Boston.
  • Ma, Y., Hu, C., Li, Y., Li, L., Deng, R., Jiang, D., 2018. Hydrodynamic Performance Analysis of the Vertical Axis Twin-Rotor Tidal Current Turbine. Water, 10(11):1964, 1–21.
  • Niblick, A.L., 2012. Experimental and Analytical Study of Helical Cross-Flow Turbines for a Tidal Micro power Generation System. MSc. Thesis, University of Washington.
  • Polagye, B.L., Cavagnaro, B.J., Niblick, A.L., 2013. Micropower From Tidal Turbines. Proceedings of the ASME 2013 Fluids Engineering Division Summer Meeting, 1–11.
  • Özekes, A., 2019. Helisel Dikey Eksen Bir Rüzgar Türbininin Belirli Tasarım Kriterleri Altında Performansının İncelenmesi. MSc Thesis, Manisa Celal Bayar Üniversitesi.
  • Sabuncu, F., Çolakoğlu, M., 2011. Turkey’s Renewable Energy Sector from a Global Perspective. PwC Turkey Report.
  • Strom, B., Brunton, S., Polagye, B., 2017. Intracycle Angular Velocity Control of Cross-Flow Turbines. Nature Energy. 2(17103).
  • Vallet, M.A., Bacha, S., Munteanu, I., Bratcu, A.I., Roye, D., 2011. Management and Control of Operating Regimes of Cross-Flow Water Turbines. IEEE Transactions on Industrial Electronics, 58 (5), 1866–1876.
  • Yang, B.N., Shu, X.W., 2012. Hydrofoil optimization and experimental validation in helical vertical axis turbine for power generation from marine current. Journal of Ocean Engineering, 42, 35–46.
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Özer Öğüçlü 0000-0002-6293-7742

Publication Date June 30, 2022
Submission Date October 25, 2020
Acceptance Date February 22, 2022
Published in Issue Year 2022

Cite

APA Öğüçlü, Ö. (2022). PERFORMANCE ANALYSIS AND OPTIMIZATION OF A HELICAL CROSS-FLOW WATER TURBINE. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(2), 605-619. https://doi.org/10.21923/jesd.816160