Research Article
BibTex RIS Cite

GENERATING REALISTIC IMAGES ON THE COMPUTER THROUGH REAL LUMINOUS INTENSITY DATA AND RADIOSITY METHOD

Year 2020, , 255 - 270, 29.12.2020
https://doi.org/10.21923/jesd.826172

Abstract

Simulation of luminous distribution and modeling techniques are widely used in generating realistic images. It is performed by modeling the interaction of light with an individual surface and combining emission, transmission and reflection effects among all the surfaces in the environment. In this study, a realistic image was generated in the simulation area created in computer environment by using real luminous intensity data. It was aimed to generate a realistic image of a table and chair in the simulation environment. A goniophotometer was used to obtain the real luminous intensity curves of the luminaire to be used in the simulation environment. Realistic images were generated by using the real luminous intensity data obtained by the goiophotometer through the radiosity method. Radiosity method was used to transfer the luminous intensity data to the computer. The level for stopping the radiosity method was decided through histogram analyses that were performed by using image processing techniques. When the change in the mean brightness value in the histogram value was 1% and below, iteration was stopped by the software. According to the results of the tests performed on the given example, it was observed that the real image could be generated after approximately 3000 iterations and that the change decreased below 1% after this value.

Supporting Institution

KOSGEB

Project Number

698-4

Thanks

Project No. 698-4 entitled "Design and Development of Angular Radiation Meter for Lighting Luminaires" was supported by KOSGEB in 2014.

References

  • Baum, D.R., Rushmeier H.E., Winget, J. M., 1989. Improving Radiosity Solutions through the Use of Analytically Determined Form-factors, SIGGRAPH Computer Graphics, 23(3), 325–334.
  • Chen, H., Wu, E.H. 1990. An efficient radiosity solution for bump texture generation. SIGGRAPH Computer Graphics, 24(4), 125-134.
  • Cohen, M.F., Greenberg, D.P., Immel, D.S., Brock, P.J., 1986. An Efficient Radiosity Approach for Realistic Image Synthesis, IEEE Computer Graphics and Applications, 6(3), 26-35.
  • Cohen, M.F., Chen, S.E., Wallace, J.R., Greenberg D.P., 1988. A Progressive Refinement Approach to Fast Radiosity Image Generation. Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques.
  • Cohen, M.F., Wallace, J.R., 2012. Radiosity and Realistic Image Synthesis. Elsevier.
  • Drucker, S. M., Schröder, P. 1992. Fast radiosity using a data parallel architecture. Third Eurographics Workshop on Rendering
  • Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B., 1984. Modeling the Interaction of Light Between Diffuse Surfaces, SIGGRAPH Computer Graphics, 18(3), 213-222.
  • Hanrahan, P., Salzman, D., Aupperle, L., 1991. A Rapid Hierarchical Radiosity Algorithm. Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, 197-206.
  • Howell, J.R., Menguc, M.P., Siegel, R., 2010. Thermal Radiation Heat Transfer. CRC press.
  • Immel, D.S., Cohen, M.F., Greenberg, D.P., 1986. A Radiosity Method for non-diffuse Environments. SIGGRAPH Computer Graphics, 20 (4), 133–142.
  • Nishita, T., Nakamae, E., 1985. Continuous Tone Representation of Three-dimensional Objects Taking Account of Shadows and Interreflection, SIGGRAPH Computer Graphics 19(3), 23-30.
  • Purgathofer, W., Zeiller, M. 1992) Fast radiosity by parallelization. Computer Graphics, 171-181.
  • Sillion, F. X., Peuch, C., 1994. Radiosity & Global Illumination.
  • Sirel, Ş., 1997. Aydınlatma Sözlüğü. YEM Yayınları.
  • Sparrow, E.M., 2018. Radiation Heat Transfer, Routledge.
  • Wallace, J.R., Cohen M.F., Greenberg, D.P., 1987. A Two-pass Solution to the Rendering Equation: A Synthesis of Ray Tracing and Radiosity Methods, SIGGRAPH Computer Graphics, 21(4), 311–320.
  • Wallace, J.R., Elmquist, K.A., Haines, E.A., 1989. A Ray Tracing Algorithm for Progressive Radiosity. Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques.
  • Whitted, T., 1979. An improved illumination model for shaded display. 6th annual Conference on Computer graphics and interactive techniques.
  • Wolfe, R.J., 2000. 3D Graphics: A Visual Approach. Oxford University Press, Inc.
  • Zhu, Y., Peng, Q., Liang, Y., 1988. Peris: A Programming Environment for Realistic Image Synthesis. Computers & Graphics, 12(3-4), 299-307.

BİLGİSAYAR ORTAMINDA GERÇEK IŞIK ŞİDDET VERİLERİ VE RADİOSİTY YÖNTEMİ KULLANILARAK GERÇEKÇİ GÖRÜNTÜLERİN OLUŞTURULMASI

Year 2020, , 255 - 270, 29.12.2020
https://doi.org/10.21923/jesd.826172

Abstract

Gerçekçi görüntü oluşturmada ışığın yayılmasını simüle etme ve modelleme teknikleri oldukça yaygın kullanılan tekniklerdir. Işığın bireysel bir yüzeyle etkileşiminin modellenmesi ortamdaki tüm yüzeyler arasında emisyon, iletim ve yansıma etkilerinin birleştirilmesiyle gerçekleşmektedir. Bu çalışmada gerçek ışık şiddet verileri kullanılarak; bilgisayar ortamında oluşturulan simülasyon alanında gerçekçi bir görüntü oluşturulmuştur. Simülasyon ortamında bir masa ve sandalyeden oluşan gerçekçi bir görüntünün oluşması amaçlanmıştır. Simülasyon ortamında kullanılacak armatürün gerçek ışık şiddet eğrilerini elde etmek için goniofotometre kullanılmıştır. Goiofotometre ile elde edilen gerçek ışık şiddet verileri radiosity metodunda kullanılarak gerçekçi resimler elde edilmiştir. Işık şiddet verilerinin bilgisayar ortamına aktarımında radiosity metodu kullanılmıştır. Radiosity yönteminin hangi seviyede durdurulacağına görüntü işleme teknikleri kullanılarak elde edilen histogram analizleri ile karar verilmiştir. Histogram değerinde ortalama parlaklık değerindeki değişim %1 ve altında bir değere ulaştığında yazılım iterasyonu durdurmuştur. Verilen örnek için yapılan testler sonucu yaklaşık 3000 iterasyondan sonra gerçek görüntünün oluşması sağlandığı; bu değerden sonra değişimin %1’in altına indiği görülmüştür.

Project Number

698-4

References

  • Baum, D.R., Rushmeier H.E., Winget, J. M., 1989. Improving Radiosity Solutions through the Use of Analytically Determined Form-factors, SIGGRAPH Computer Graphics, 23(3), 325–334.
  • Chen, H., Wu, E.H. 1990. An efficient radiosity solution for bump texture generation. SIGGRAPH Computer Graphics, 24(4), 125-134.
  • Cohen, M.F., Greenberg, D.P., Immel, D.S., Brock, P.J., 1986. An Efficient Radiosity Approach for Realistic Image Synthesis, IEEE Computer Graphics and Applications, 6(3), 26-35.
  • Cohen, M.F., Chen, S.E., Wallace, J.R., Greenberg D.P., 1988. A Progressive Refinement Approach to Fast Radiosity Image Generation. Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques.
  • Cohen, M.F., Wallace, J.R., 2012. Radiosity and Realistic Image Synthesis. Elsevier.
  • Drucker, S. M., Schröder, P. 1992. Fast radiosity using a data parallel architecture. Third Eurographics Workshop on Rendering
  • Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B., 1984. Modeling the Interaction of Light Between Diffuse Surfaces, SIGGRAPH Computer Graphics, 18(3), 213-222.
  • Hanrahan, P., Salzman, D., Aupperle, L., 1991. A Rapid Hierarchical Radiosity Algorithm. Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, 197-206.
  • Howell, J.R., Menguc, M.P., Siegel, R., 2010. Thermal Radiation Heat Transfer. CRC press.
  • Immel, D.S., Cohen, M.F., Greenberg, D.P., 1986. A Radiosity Method for non-diffuse Environments. SIGGRAPH Computer Graphics, 20 (4), 133–142.
  • Nishita, T., Nakamae, E., 1985. Continuous Tone Representation of Three-dimensional Objects Taking Account of Shadows and Interreflection, SIGGRAPH Computer Graphics 19(3), 23-30.
  • Purgathofer, W., Zeiller, M. 1992) Fast radiosity by parallelization. Computer Graphics, 171-181.
  • Sillion, F. X., Peuch, C., 1994. Radiosity & Global Illumination.
  • Sirel, Ş., 1997. Aydınlatma Sözlüğü. YEM Yayınları.
  • Sparrow, E.M., 2018. Radiation Heat Transfer, Routledge.
  • Wallace, J.R., Cohen M.F., Greenberg, D.P., 1987. A Two-pass Solution to the Rendering Equation: A Synthesis of Ray Tracing and Radiosity Methods, SIGGRAPH Computer Graphics, 21(4), 311–320.
  • Wallace, J.R., Elmquist, K.A., Haines, E.A., 1989. A Ray Tracing Algorithm for Progressive Radiosity. Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques.
  • Whitted, T., 1979. An improved illumination model for shaded display. 6th annual Conference on Computer graphics and interactive techniques.
  • Wolfe, R.J., 2000. 3D Graphics: A Visual Approach. Oxford University Press, Inc.
  • Zhu, Y., Peng, Q., Liang, Y., 1988. Peris: A Programming Environment for Realistic Image Synthesis. Computers & Graphics, 12(3-4), 299-307.
There are 20 citations in total.

Details

Primary Language English
Subjects Electrical Engineering
Journal Section Research Articles
Authors

İsmail Serkan Üncü 0000-0003-4345-761X

Mehmet Kayakuş 0000-0003-0394-5862

Project Number 698-4
Publication Date December 29, 2020
Submission Date November 15, 2020
Acceptance Date December 16, 2020
Published in Issue Year 2020

Cite

APA Üncü, İ. S., & Kayakuş, M. (2020). GENERATING REALISTIC IMAGES ON THE COMPUTER THROUGH REAL LUMINOUS INTENSITY DATA AND RADIOSITY METHOD. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(5), 255-270. https://doi.org/10.21923/jesd.826172