Research Article
BibTex RIS Cite

REGIONALIZATION AND MAPPING OF DISSOLVED OXYGEN CONCENTRATION OF SAKARYA BASIN BY L‒MOMENTS METHOD

Year 2021, , 495 - 510, 20.06.2021
https://doi.org/10.21923/jesd.846466

Abstract

In this study, a regionalization study was conducted with the L–Moments method in order to determine the change of dissolved oxygen (DO) required to sustain the life of aquatic organisms in a given return period and also to consider the effects of all stations. Dissolved oxygen concentration data of 20 meteorological stations for spring months were evaluated between 1995 and 2014 in Sakarya Basin, Turkey. Firstly, Homogeneity Criterion (H1) statistical results have been determined that the study area is not uniformly homogeneous in Sakarya Basin (H1= 18.01 >> 1.0). In order to implement the L−Moments method, the Sakarya Basin is divided into five homogeneous regions considering the topographic characteristics of the basin. In the second phase of the study, L−Moments method; Wakeby distribution proposed by Hosking parameters were estimated. By using the parameter values of the Wakeby distribution, statistical dimensionless DO content values corresponding to the periodic repetition periods were obtained. In the last stage of the study; 50, 100, 200, 500 and 1000 years repetitive thematic DO content maps were created by using Inverse distance weighted interpolation method (IDW) with the aim of visually expressing DO content data estimated by L−Moments method.

References

  • Alley, W. M., and Burns, A. W., 1983. Mixed‒station extension of monthly streamflow records. Journal of Hydraulic Engineering 109, 1272–1284. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:10(1272).
  • Anlı, A.S., Apaydın H., Öztürk F., 2007. Regional Flood Frequency Estimation for the Göksu River Basin Through L–Moment, International River Basin Management Conference. State Hydraulic Works, pp 424–438, Gloria Golf Resort Hotel, Belek, Antalya, Turkey, 2007.
  • Ay, M., and Kisi, O., 2012. Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J. Environ. Eng., 138(6). https://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000511.
  • Chen, Y.D., Huang, G., Shao, Q., Xu, C.Y., 2006. Regional analysis of low flow using L‒moments for Dongjiang basin, South China. Hydrological Sciences Journal 61(6), 1051‒1064. https://doi.org/10.1623/hysj.51.6.1051.
  • Cheng, P., Li, X., Su, J., Hao, S., 2018. Recent water quality trends in a typical semi‒1 arid river with a sharp streamflow decrease and sewage treatment plants construction. Environmental Research Letters, 13, 1‒10. https://doi.org/10.1088/1748-9326/aa9df2.
  • Haktanir, T., Citakoglu, H., & Acanal, N. 2013. Fifteen-stage operation of gated spillways for flood routing management through artificial reservoirs. Hydrological sciences journal, 58(5), 1013-1031.
  • Citakoglu, H. 2015. Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Computers and Electronics in Agriculture, 118, 28-37.
  • Cıtakoglu, H., Demir, V., Haktanır, T., 2017. Regional Frequency Analysis of Annual Flood Peaks of Natural Streams Discharging To The Black Sea By The L-Moments Method. Omer Halisdemir University Journal of Engineering Sciences 6(2), 571‒580.
  • Dalrymple, T., 1960a. Flood Frequency Analysis,first ed. Geological Survey Water‒Supply Paper 1543‒A, Washington, D.C., USA.
  • Dalrymple, T., 1960b.Flood Frequency Analysis, Water Supply Paper, 1543‒A, U.S. Geological Survey, Washington, D.C.
  • Diamantini, E., Lutz, S. R., Mallucci, S., Majone, B., Merz, R., and Bellin, A., 2018. Driver detection of water qualitytrends in three large European river basins. Science of the Total Environment 612, 49–62. http://dx.doi.org/10.1016/j.scitotenv.2017.08.172.
  • Doğan, H.M., Yılmaz, D.S., Kılıç, O.M., 2013. Orta Kelkit Havzası’nın Bazı Toprak Özelliklerinin Ters Mesafe Ağırlık Yöntemi (IDW) ile Haritalanması ve Yorumlanması. Gaziosmanpaşa Bilimsel Araştırma Dergisi. 6, 46-54.
  • Gonzales‒Inca, C. A., Lepistö, A. and Huttula, T., 2016. Trend detection in water‒quality and load time‒series from agricultural catchments of Yläneenjoki and Pyhäjoki, SW Finland. Boreal Environment Research 21, 166‒80.
  • Granger, S.J., Bol, R., Anthony, S., Owens, P.N., White, S.M., Haygarth, P.M., 2010. Chapter 3 ‒ Towards a holistic classification of diffuse agricultural water pollution from intensively managed grasslands on heavy soils. In: Agronomy BT‒A in, editor. Advances in Agronomy. vol. 105. Academic Press, pp. 83–115.
  • Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, J.R., 1979. Probability Weighted Moments: Definition and Relation to Parameters of Several Distribution Exprensible in Inverse Form. Water Resources Research 15(5), 1049−1054. https://doi.org/10.1029/WR015i005p01049.
  • Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D., Wada, Y., and Wisser, D., 2016. Global water resources affected by human interventions and climate change. P. Natl. Acad. Sci. USA, 111, 3251–3256. doi: 10.1073/pnas.1222475110.
  • Haktanir, T., Citakoglu, H., Seçkin, N., 2016. Regional frequency analyses of successive-duration annual maximum rainfalls by L‒moments method. Hydrological Sciences Journal 61(4), 647‒668. http://dx.doi.org/10.1080/02626667.2014.966722.
  • Halbe, J., Pahl‒Wostl, C., Sendzimir, J., and Adamowski, J., 2013. Towards adaptive and integrated management paradigms to meet the challenges of water governance, Water Science and Technology 67(11), 2651–2660. DOI:10.2166/wst.2013.146.
  • Helsel, D. R., Hirsch, R. M., 2002. Statistical methods in water resources. techniques of water−resources investigations of the united states geological survey, Book 4, Hydrologic Analysis and Interpretation, Chapter A3, 524 pp.
  • Heperkan H., Kesgin U., 2003. Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler, 919−923. In: Numerical Methods For Engineers (Eds. Chapra, S.C., Canale, R.P.). Literatür Yayınevi Number: 82, İstanbul.
  • Hirsch, R.M., Douglas, L.M. and Stacey A.A., 2010. Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake bay river inputs. JAWRA 46, 857–880. https://doi.org/10.1111/j.1752-1688.2010.00482.x.
  • Hosking, J. R. M., Wallis, J. R., 1993. Some statistics useful in regional frequency analysis. Water Resour. Res. 29(2): 271–281. https://doi.org/10.1029/92WR01980.
  • Hosking, J. R. M., 1990. L‒Moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 52, 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x.
  • Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis An Approach Based on L−Moments, first ed. Cambridge University Press, London, UK.
  • Khalil, B., Awadallah, A.G., Adamowski J., Elsayed, A., 2016. A Novel Record‒Extension Technique for Water Quality Variables Based on L‒Moments. Water Air Soil Pollution 227(179), 1‒20. http://dx.doi.org/10.1007/s11270-016-2852-9.
  • Kisi, O., Akbari, N., Sanatipour, M., Hashemi, A., Teimourzadeh, K., Shiri, J., 2013. Modeling of dissolved oxygen in river water using artificial intelligence techniques, Journal of Environmental Informatics 22, 92‒101. doi:10.3808/jei.201300248.
  • Kumar, R., Chatterjee, C., 2005. Regional Flood Frequency Analysis Using L‒Moments for North Brahmaputra Region of India. Journal of Hydrologic Engineering 10(1), 1‒7. DOI: 10.1061/(ASCE)1084-0699(2005)10:1(1).
  • Kundzewicz, Z W. and Krysanova, V., 2010. Climate change and stream water quality in the multi‒factor context, Clim. Change, 103(3‒4), 353‒362. DOI:10.1007/s10584-010-9822-9.
  • Mainali, J., Chang, H., 2018. Landscape and Anthropogenic Factors Affecting Spatial Patterns of Water Quality Trends in a Large River basin, South Korea. Journal of Hydrology 564, 26–40. https://doi.org/10.1016/j.jhydrol.2018.06.074.
  • Montgomery, D., Peck, E. A., Vining, G., 2001. Introduction to Linear Regression Analysis, 3rd edition. John Wiley, New York, 134 pp.
  • Seckin, N., Yurtal, R., Haktanır, T., Topaloğlu, F., 2010. Regional Flood Frequency Analysis of Ceyhan River Basin in Turkey Using L–Moments Method. Fresenius Environmental Bulletin 19(11a), 2616–2624.
  • Shanbehzadeh, S., Vahid Dastjerdi, M., Hassanzadeh, A., Kiyanizadeh, T., 2014. Heavy metals in water and sediment: a case study of Tembi River. J. Environ. Public Health, 28–34. doi: 10.1155/2014/858720.
  • URL: http://lib.stat.cmu.edu/general/lmoments (accessed 29 February 2020).
  • Yağbasan Özlem, Demir Vahdettin, Yazıcıgil Hasan (2020). Trend Analyses of Meteorological Variables and Lake Levels for Two Shallow Lakes in Central Turkey. Water, 12(414), 1-16., Doi: 10.3390/w12020414.

SAKARYA HAVZASI ÇÖZÜNMÜŞ OKSİJEN KONSANTRASYONUNUN L‒MOMENTLERİ YÖNTEMİ İLE BÖLGESELLEŞTİRİLMESİ VE HARİTALANMASI

Year 2021, , 495 - 510, 20.06.2021
https://doi.org/10.21923/jesd.846466

Abstract

Bu çalışmada, belirli bir dönüş periyodunda suda yaşayan organizmaların yaşamını sürdürmek için gerekli olan çözünmüş oksijen (DO) değişimini belirlemek ve ayrıca tüm istasyonların etkilerini göz önünde bulundurmak için L-Moments yöntemi ile bölgeselleştirme çalışması yapılmıştır. Sakarya Havzası'nda ilkbahar ayları için 20 meteoroloji istasyonunun çözünmüş oksijen konsantrasyonu verileri 1995-2014 yılları arasında değerlendirilmiştir. İlk olarak, Homojenlik Kriteri (H1) istatistiksel sonuçları, çalışma alanının Sakarya Havzası'nda (H1 = 18.01 >> 1.0) tekdüze homojen olmadığı belirlenmiştir. L − Momentleri yönteminin uygulanması için Sakarya Havzası, havzanın topografik özellikleri dikkate alınarak beş homojen bölgeye ayrılmıştır. Araştırmanın ikinci aşamasında, L − Momentler yöntemi; Hosking parametreleri tarafından önerilen Wakeby dağılımı tahmin edildi. Wakeby dağılımının parametre değerleri kullanılarak periyodik tekrar periyotlarına karşılık gelen istatistiksel boyutsuz DO içerik değerleri elde edilmiştir. Çalışmanın son aşamasında; L − Moments yöntemi ile tahmin edilen DO içerik verilerini görsel olarak ifade etmek amacıyla Ters mesafe ağırlıklı enterpolasyon yöntemi (IDW) kullanılarak 50, 100, 200, 500 ve 1000 yıllık tekrarlayan tematik DO içerik haritaları oluşturulmuştur.

References

  • Alley, W. M., and Burns, A. W., 1983. Mixed‒station extension of monthly streamflow records. Journal of Hydraulic Engineering 109, 1272–1284. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:10(1272).
  • Anlı, A.S., Apaydın H., Öztürk F., 2007. Regional Flood Frequency Estimation for the Göksu River Basin Through L–Moment, International River Basin Management Conference. State Hydraulic Works, pp 424–438, Gloria Golf Resort Hotel, Belek, Antalya, Turkey, 2007.
  • Ay, M., and Kisi, O., 2012. Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. J. Environ. Eng., 138(6). https://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000511.
  • Chen, Y.D., Huang, G., Shao, Q., Xu, C.Y., 2006. Regional analysis of low flow using L‒moments for Dongjiang basin, South China. Hydrological Sciences Journal 61(6), 1051‒1064. https://doi.org/10.1623/hysj.51.6.1051.
  • Cheng, P., Li, X., Su, J., Hao, S., 2018. Recent water quality trends in a typical semi‒1 arid river with a sharp streamflow decrease and sewage treatment plants construction. Environmental Research Letters, 13, 1‒10. https://doi.org/10.1088/1748-9326/aa9df2.
  • Haktanir, T., Citakoglu, H., & Acanal, N. 2013. Fifteen-stage operation of gated spillways for flood routing management through artificial reservoirs. Hydrological sciences journal, 58(5), 1013-1031.
  • Citakoglu, H. 2015. Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Computers and Electronics in Agriculture, 118, 28-37.
  • Cıtakoglu, H., Demir, V., Haktanır, T., 2017. Regional Frequency Analysis of Annual Flood Peaks of Natural Streams Discharging To The Black Sea By The L-Moments Method. Omer Halisdemir University Journal of Engineering Sciences 6(2), 571‒580.
  • Dalrymple, T., 1960a. Flood Frequency Analysis,first ed. Geological Survey Water‒Supply Paper 1543‒A, Washington, D.C., USA.
  • Dalrymple, T., 1960b.Flood Frequency Analysis, Water Supply Paper, 1543‒A, U.S. Geological Survey, Washington, D.C.
  • Diamantini, E., Lutz, S. R., Mallucci, S., Majone, B., Merz, R., and Bellin, A., 2018. Driver detection of water qualitytrends in three large European river basins. Science of the Total Environment 612, 49–62. http://dx.doi.org/10.1016/j.scitotenv.2017.08.172.
  • Doğan, H.M., Yılmaz, D.S., Kılıç, O.M., 2013. Orta Kelkit Havzası’nın Bazı Toprak Özelliklerinin Ters Mesafe Ağırlık Yöntemi (IDW) ile Haritalanması ve Yorumlanması. Gaziosmanpaşa Bilimsel Araştırma Dergisi. 6, 46-54.
  • Gonzales‒Inca, C. A., Lepistö, A. and Huttula, T., 2016. Trend detection in water‒quality and load time‒series from agricultural catchments of Yläneenjoki and Pyhäjoki, SW Finland. Boreal Environment Research 21, 166‒80.
  • Granger, S.J., Bol, R., Anthony, S., Owens, P.N., White, S.M., Haygarth, P.M., 2010. Chapter 3 ‒ Towards a holistic classification of diffuse agricultural water pollution from intensively managed grasslands on heavy soils. In: Agronomy BT‒A in, editor. Advances in Agronomy. vol. 105. Academic Press, pp. 83–115.
  • Greenwood, J.A., Landwehr, J.M., Matalas, N.C., Wallis, J.R., 1979. Probability Weighted Moments: Definition and Relation to Parameters of Several Distribution Exprensible in Inverse Form. Water Resources Research 15(5), 1049−1054. https://doi.org/10.1029/WR015i005p01049.
  • Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N., Konzmann, M., Ludwig, F., Masaki, Y., Schewe, J., Stacke, T., Tessler, Z. D., Wada, Y., and Wisser, D., 2016. Global water resources affected by human interventions and climate change. P. Natl. Acad. Sci. USA, 111, 3251–3256. doi: 10.1073/pnas.1222475110.
  • Haktanir, T., Citakoglu, H., Seçkin, N., 2016. Regional frequency analyses of successive-duration annual maximum rainfalls by L‒moments method. Hydrological Sciences Journal 61(4), 647‒668. http://dx.doi.org/10.1080/02626667.2014.966722.
  • Halbe, J., Pahl‒Wostl, C., Sendzimir, J., and Adamowski, J., 2013. Towards adaptive and integrated management paradigms to meet the challenges of water governance, Water Science and Technology 67(11), 2651–2660. DOI:10.2166/wst.2013.146.
  • Helsel, D. R., Hirsch, R. M., 2002. Statistical methods in water resources. techniques of water−resources investigations of the united states geological survey, Book 4, Hydrologic Analysis and Interpretation, Chapter A3, 524 pp.
  • Heperkan H., Kesgin U., 2003. Yazılım ve Programlama Uygulamalarıyla Mühendisler İçin Sayısal Yöntemler, 919−923. In: Numerical Methods For Engineers (Eds. Chapra, S.C., Canale, R.P.). Literatür Yayınevi Number: 82, İstanbul.
  • Hirsch, R.M., Douglas, L.M. and Stacey A.A., 2010. Weighted regressions on time, discharge, and season (WRTDS), with an application to Chesapeake bay river inputs. JAWRA 46, 857–880. https://doi.org/10.1111/j.1752-1688.2010.00482.x.
  • Hosking, J. R. M., Wallis, J. R., 1993. Some statistics useful in regional frequency analysis. Water Resour. Res. 29(2): 271–281. https://doi.org/10.1029/92WR01980.
  • Hosking, J. R. M., 1990. L‒Moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 52, 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x.
  • Hosking, J.R.M., Wallis, J.R., 1997. Regional Frequency Analysis An Approach Based on L−Moments, first ed. Cambridge University Press, London, UK.
  • Khalil, B., Awadallah, A.G., Adamowski J., Elsayed, A., 2016. A Novel Record‒Extension Technique for Water Quality Variables Based on L‒Moments. Water Air Soil Pollution 227(179), 1‒20. http://dx.doi.org/10.1007/s11270-016-2852-9.
  • Kisi, O., Akbari, N., Sanatipour, M., Hashemi, A., Teimourzadeh, K., Shiri, J., 2013. Modeling of dissolved oxygen in river water using artificial intelligence techniques, Journal of Environmental Informatics 22, 92‒101. doi:10.3808/jei.201300248.
  • Kumar, R., Chatterjee, C., 2005. Regional Flood Frequency Analysis Using L‒Moments for North Brahmaputra Region of India. Journal of Hydrologic Engineering 10(1), 1‒7. DOI: 10.1061/(ASCE)1084-0699(2005)10:1(1).
  • Kundzewicz, Z W. and Krysanova, V., 2010. Climate change and stream water quality in the multi‒factor context, Clim. Change, 103(3‒4), 353‒362. DOI:10.1007/s10584-010-9822-9.
  • Mainali, J., Chang, H., 2018. Landscape and Anthropogenic Factors Affecting Spatial Patterns of Water Quality Trends in a Large River basin, South Korea. Journal of Hydrology 564, 26–40. https://doi.org/10.1016/j.jhydrol.2018.06.074.
  • Montgomery, D., Peck, E. A., Vining, G., 2001. Introduction to Linear Regression Analysis, 3rd edition. John Wiley, New York, 134 pp.
  • Seckin, N., Yurtal, R., Haktanır, T., Topaloğlu, F., 2010. Regional Flood Frequency Analysis of Ceyhan River Basin in Turkey Using L–Moments Method. Fresenius Environmental Bulletin 19(11a), 2616–2624.
  • Shanbehzadeh, S., Vahid Dastjerdi, M., Hassanzadeh, A., Kiyanizadeh, T., 2014. Heavy metals in water and sediment: a case study of Tembi River. J. Environ. Public Health, 28–34. doi: 10.1155/2014/858720.
  • URL: http://lib.stat.cmu.edu/general/lmoments (accessed 29 February 2020).
  • Yağbasan Özlem, Demir Vahdettin, Yazıcıgil Hasan (2020). Trend Analyses of Meteorological Variables and Lake Levels for Two Shallow Lakes in Central Turkey. Water, 12(414), 1-16., Doi: 10.3390/w12020414.
There are 34 citations in total.

Details

Primary Language English
Subjects Environmental Engineering, Civil Engineering
Journal Section Research Articles
Authors

Hatice Çıtakoğlu 0000-0001-7319-6006

Alev Demir 0000-0002-6636-7425

Betül Gemici 0000-0003-1731-536X

Publication Date June 20, 2021
Submission Date December 24, 2020
Acceptance Date March 28, 2021
Published in Issue Year 2021

Cite

APA Çıtakoğlu, H., Demir, A., & Gemici, B. (2021). REGIONALIZATION AND MAPPING OF DISSOLVED OXYGEN CONCENTRATION OF SAKARYA BASIN BY L‒MOMENTS METHOD. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(2), 495-510. https://doi.org/10.21923/jesd.846466