Research Article
BibTex RIS Cite

SURFACE FREE ENERGY AND FLEXURAL PROPERTIES OF WOLLASTONITE FILLED POLYPROPYLENE COMPOSITES

Year 2021, , 389 - 395, 20.06.2021
https://doi.org/10.21923/jesd.878299

Abstract

Nowadays, appearance is an important factor in vehicles. For this reason, paint application is widely used in plastic parts. Surface energy is a key parameter for the adhesion of paint on the surface of polymers. Among thermoplastic polymers, polycarbonate and acrylonitrile butadiene styrene are commonly used materials due to their higher surface energies. For low surface energy materials, surface energies can be increased using streamer, plasma, corona, mechanical etching and chemical etching methods. The aim of this work is to eliminate the pre-treatments applied to parts produced with polypropylene (PP) polymer using wollastonite (CaSiO3) additive. For this purpose, CaSiO3 filled PP composites containing 40 wt.% wollastonite with different sizes and coatings were produced by extrusion process. Afterwards, plate samples were prepared from granules using a hot pressing device. Flexural properties and surface free energy measurements were performed on these composites produced in plate form. From the results, an increased surface free energy was observed for small particle size and aminosilane coated wollastonite added PP composite with an increase by 23% of the total surface free energy. Flexural strengths were well correlated with the surface free energy results and showed an increase by 1.2% for the same additive.

References

  • Brandl, W., Marginean, G., Chirila, V., Warschewski, W. 2004. Production and characterisation of vapour grown carbon fiber/polypropylene composites. Carbon, 42 (1), 5-9.
  • Cantero, G., Arbelaiz, A., Llano-Ponte, R., Mondragon, I. 2003. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology, 63 (9), 1247-1254.
  • Chan, J. X., Wong, J. F., Hassan, A., Mohamad, Z., Othman, N. 2020. Mechanical properties of wollastonite reinforced thermoplastic composites: A review. Polymer Composites, 41 (2), 395-429.
  • Chen, M., Wan, C., Shou, W., Zhang, Y., Zhang, Y., Zhang, J. 2008. Effects of interfacial adhesion on properties of polypropylene/Wollastonite composites. Journal of Applied Polymer Science, 107 (3), 1718-1723.
  • Demjén, Z., Pukánszky, B., Nagy, J. 1998. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A: Applied Science and Manufacturing, 29 (3), 323-329.
  • Drelich, J., Miller, J. D. 1995. A critical review of wetting and adhesion phenomena in the preparation of polymer-mineral composites. Mining, Metallurgy & Exploration, 12 (4), 197-204.
  • Holec, D., Dumitraschkewitz, P., Vollath, D., Fischer, F. D. 2020. Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials, 10 (3), 484.
  • Khoshkava, V., Kamal, M. R. 2013. Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites. Biomacromolecules, 14 (9), 3155-3163.
  • Lee, C. H., Yang, H. E., Bae, Y. C., Oh, J. S. 2018. Phase equilibria and the surface tension of polypropylene polyol series in water/methanol mixtures: A consideration of structural effects. Polymer, 146, 169-178.
  • Luyt, A. S., Dramicanin, M. D., Antic, Z., Djokovic, V. 2009. Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polymer Testing, 28 (3), 348-356.
  • Meng, M. R., Dou, Q. 2008. Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Materials Science and Engineering A, 492 (1-2), 177-184.
  • Owens, D. K., Wendt, R. C. 1969. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13 (8), 1741-1747.
  • Qu, J., Liu, W., He, H. 2009. The Preparation of Polypropylene/Wollastonite Composites with Tri-screw Dynamic Compounding Extruder. Polymer-Plastics Technology and Engineering, 48 (3), 260-264.
  • Rothon, R. N. 1999. Mineral Fillers in Thermoplastics: Filler Manufacture and Characterisation. Berlin: Springer.
  • Rudawska, A., Jakubowska, P., Kloziński, A. 2017. Surface free energy of composite materials with high calcium carbonate filler content. Polymery, 62 (6), 434-440.
  • Şekercioğlu, T., Kaner, S. 2014. Plastiklerin Yapıştırılmasında Yüzey Hazırlama Yöntemlerinin İncelenmesi. Mühendis ve Makina, 55 (648), 37-43.
  • Shimizu, R. N., Demarquette, N. R. 2000. Evaluation of Surface Energy of Solid Polymers Using Different Models. Journal of Applied Polymer Science, 76 (12), 1831-1845.
  • Shokoohi, S., Arefazar, A., Khosrokhavar, R. 2008. Silane Coupling Agents in Polymer-based Reinforced Composites: A Review. Journal of Reinforced Plastics and Composites, 27 (5), 473-485 .
  • Sohail, O. B., Bin-Dahman, O. A., Rahaman, M., Al-Harthi, M. A. 2017. Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites. Journal of Polymer Engineering, 37 (8), 765–775.
  • Sohail, O. B., Sreekumar, P. A., De, S. K., Khan, M. J., Hakeem, A., Alshaiban, A. A., Al-Harthi, M. A. 2012. Thermal Effect of Ceramic Nanofiller Aluminium Nitride on Polyethylene Properties. Journal of Nanomaterials, 250364.
  • Svab, I., Musil, V., Leskovac, M. 2005. The Adhesion Phenomena in Polypropylene/Wollastonite Composites. Acta Chimica Slovenica, 52 (3), 264-271.
  • Svab, I., Musil, V., Pustak, A., Smit, I. 2009. Wollastonite‐reinforced polypropylene composites modified with novel metallocene EPR copolymers. II. Mechanical properties and adhesion. Polymer Composites, 30 (8), 1091-1097.
  • Svab, I., Musil, V., Smit, I., Makarovic, M. 2007. Mechanical Properties of Wollastonite-Reinforced Polypropylene Composites Modified With SEBS and SEBS-g-MA Elastomers. Polymer Engineering and Science, 47 (11), 1873-1880.
  • Yang, J., Xiao, J., Zeng, J., Bian, L., Peng, C., Yang , F. 2013. Matrix modification with silane coupling agent for carbon fiber reinforced epoxy composites. Fibers and Polymers, 14 (5), 759-766.
  • Yuan, D., Gao, Y. F., Guo, Z. X., Yu, J. 2017. Improved thermal conductivity of ceramic filler‐filled polyamide composites by using PA6/PA66 1:1 blend as matrix. Journal of Applied Polymer Science, 134 (40), 45371.
  • Zapata-Massot, C., Le Bolay, N. 2007. Effect of the Mineral Filler on the Surface Properties of Co-Ground Polymeric Composites. Particle and Particle Systems Characterization , 24 (4-5), 339-344.

VOLLASTONİT KATKILI POLİPROPİLEN KOMPOZİTLERİN YÜZEY SERBEST ENERJİSİ VE EĞİLME ÖZELLİKLERİ

Year 2021, , 389 - 395, 20.06.2021
https://doi.org/10.21923/jesd.878299

Abstract

Günümüzde, araçlarda görsellik önemli bir faktördür. Bu nedenle, plastik parçalarda boya uygulaması yaygın olarak kullanılmaktadır. Boyanın polimer yüzeyine yapışması için yüzey enerjisi önemli bir etkendir. Termoplastik polimerler arasında, yüzey enerjileri daha yüksek olduğundan dolayı genellikle polikarbonat ve akrilonitril bütadien stiren polimerleri yaygın olarak kullanılmaktadırlar. Düşük yüzey enerjili malzemelerde ise flamaj, plazma, korona, mekanik dağlama ve kimyasal dağlama yöntemleri kullanılarak yüzey enerjileri arttırılmaktadır. Bu çalışmanın amacı vollastonit (CaSiO3) katkı malzemesi kullanılarak, polipropilen (PP) polimeri ile üretilen parçalara uygulanan ön işlemlerin ortadan kaldırılmasını sağlayabilmektir. Bu amaçla, ağırlıkça %40 katkı içeren ve farklı boyut ve kaplamalardan oluşan CaSiO3 katkılı PP kompozitler ekstrüzyon yöntemi ile üretilmiştir. Daha sonra, sıcak presleme cihazı kullanılarak granüllerden plakalar elde edilmiştir. Plaka halinde üretilen kompozitlerin eğilme özellikleri ve yüzey serbest enerjisi ölçümleri yapılmıştır. Sonuçlara bakıldığında, küçük partikül boyutlu ve aminosilan kaplı vollastonit katkılı PP kompozitin toplam yüzey serbest enerjisinin %23 değerinde bir artışıyla, yüzey enerjisini arttırıcı bir özelliği olduğu görülmüştür. Eğilme mukavemetleri yüzey serbest enerjisi sonuçlarıyla örtüşmektedir ve aynı katkı için %1.2 oranında bir artış elde edilmiştir.

References

  • Brandl, W., Marginean, G., Chirila, V., Warschewski, W. 2004. Production and characterisation of vapour grown carbon fiber/polypropylene composites. Carbon, 42 (1), 5-9.
  • Cantero, G., Arbelaiz, A., Llano-Ponte, R., Mondragon, I. 2003. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Composites Science and Technology, 63 (9), 1247-1254.
  • Chan, J. X., Wong, J. F., Hassan, A., Mohamad, Z., Othman, N. 2020. Mechanical properties of wollastonite reinforced thermoplastic composites: A review. Polymer Composites, 41 (2), 395-429.
  • Chen, M., Wan, C., Shou, W., Zhang, Y., Zhang, Y., Zhang, J. 2008. Effects of interfacial adhesion on properties of polypropylene/Wollastonite composites. Journal of Applied Polymer Science, 107 (3), 1718-1723.
  • Demjén, Z., Pukánszky, B., Nagy, J. 1998. Evaluation of interfacial interaction in polypropylene/surface treated CaCO3 composites. Composites Part A: Applied Science and Manufacturing, 29 (3), 323-329.
  • Drelich, J., Miller, J. D. 1995. A critical review of wetting and adhesion phenomena in the preparation of polymer-mineral composites. Mining, Metallurgy & Exploration, 12 (4), 197-204.
  • Holec, D., Dumitraschkewitz, P., Vollath, D., Fischer, F. D. 2020. Surface Energy of Au Nanoparticles Depending on Their Size and Shape. Nanomaterials, 10 (3), 484.
  • Khoshkava, V., Kamal, M. R. 2013. Effect of Surface Energy on Dispersion and Mechanical Properties of Polymer/Nanocrystalline Cellulose Nanocomposites. Biomacromolecules, 14 (9), 3155-3163.
  • Lee, C. H., Yang, H. E., Bae, Y. C., Oh, J. S. 2018. Phase equilibria and the surface tension of polypropylene polyol series in water/methanol mixtures: A consideration of structural effects. Polymer, 146, 169-178.
  • Luyt, A. S., Dramicanin, M. D., Antic, Z., Djokovic, V. 2009. Morphology, mechanical and thermal properties of composites of polypropylene and nanostructured wollastonite filler. Polymer Testing, 28 (3), 348-356.
  • Meng, M. R., Dou, Q. 2008. Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites. Materials Science and Engineering A, 492 (1-2), 177-184.
  • Owens, D. K., Wendt, R. C. 1969. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 13 (8), 1741-1747.
  • Qu, J., Liu, W., He, H. 2009. The Preparation of Polypropylene/Wollastonite Composites with Tri-screw Dynamic Compounding Extruder. Polymer-Plastics Technology and Engineering, 48 (3), 260-264.
  • Rothon, R. N. 1999. Mineral Fillers in Thermoplastics: Filler Manufacture and Characterisation. Berlin: Springer.
  • Rudawska, A., Jakubowska, P., Kloziński, A. 2017. Surface free energy of composite materials with high calcium carbonate filler content. Polymery, 62 (6), 434-440.
  • Şekercioğlu, T., Kaner, S. 2014. Plastiklerin Yapıştırılmasında Yüzey Hazırlama Yöntemlerinin İncelenmesi. Mühendis ve Makina, 55 (648), 37-43.
  • Shimizu, R. N., Demarquette, N. R. 2000. Evaluation of Surface Energy of Solid Polymers Using Different Models. Journal of Applied Polymer Science, 76 (12), 1831-1845.
  • Shokoohi, S., Arefazar, A., Khosrokhavar, R. 2008. Silane Coupling Agents in Polymer-based Reinforced Composites: A Review. Journal of Reinforced Plastics and Composites, 27 (5), 473-485 .
  • Sohail, O. B., Bin-Dahman, O. A., Rahaman, M., Al-Harthi, M. A. 2017. Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites. Journal of Polymer Engineering, 37 (8), 765–775.
  • Sohail, O. B., Sreekumar, P. A., De, S. K., Khan, M. J., Hakeem, A., Alshaiban, A. A., Al-Harthi, M. A. 2012. Thermal Effect of Ceramic Nanofiller Aluminium Nitride on Polyethylene Properties. Journal of Nanomaterials, 250364.
  • Svab, I., Musil, V., Leskovac, M. 2005. The Adhesion Phenomena in Polypropylene/Wollastonite Composites. Acta Chimica Slovenica, 52 (3), 264-271.
  • Svab, I., Musil, V., Pustak, A., Smit, I. 2009. Wollastonite‐reinforced polypropylene composites modified with novel metallocene EPR copolymers. II. Mechanical properties and adhesion. Polymer Composites, 30 (8), 1091-1097.
  • Svab, I., Musil, V., Smit, I., Makarovic, M. 2007. Mechanical Properties of Wollastonite-Reinforced Polypropylene Composites Modified With SEBS and SEBS-g-MA Elastomers. Polymer Engineering and Science, 47 (11), 1873-1880.
  • Yang, J., Xiao, J., Zeng, J., Bian, L., Peng, C., Yang , F. 2013. Matrix modification with silane coupling agent for carbon fiber reinforced epoxy composites. Fibers and Polymers, 14 (5), 759-766.
  • Yuan, D., Gao, Y. F., Guo, Z. X., Yu, J. 2017. Improved thermal conductivity of ceramic filler‐filled polyamide composites by using PA6/PA66 1:1 blend as matrix. Journal of Applied Polymer Science, 134 (40), 45371.
  • Zapata-Massot, C., Le Bolay, N. 2007. Effect of the Mineral Filler on the Surface Properties of Co-Ground Polymeric Composites. Particle and Particle Systems Characterization , 24 (4-5), 339-344.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Serkan Soncu 0000-0002-7464-3768

Meral Akkoyun 0000-0002-8113-5534

Publication Date June 20, 2021
Submission Date February 10, 2021
Acceptance Date April 29, 2021
Published in Issue Year 2021

Cite

APA Soncu, S., & Akkoyun, M. (2021). SURFACE FREE ENERGY AND FLEXURAL PROPERTIES OF WOLLASTONITE FILLED POLYPROPYLENE COMPOSITES. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(2), 389-395. https://doi.org/10.21923/jesd.878299