Research Article
BibTex RIS Cite

INVESTIGATION OF THE EFFECT OF GEOPHONE CENTER FREQUENCY ON THE FIRST ARRIVAL TIMES IN SEISMIC REFRACTION DATA

Year 2021, , 880 - 893, 21.09.2021
https://doi.org/10.21923/jesd.890520

Abstract

In our country, 4.5Hz vertical geophones are generally used for multi-channel surface wave measurement in geophysical studies or field studies controlled by public institutions. However, some public institutions do not allow using 4.5Hz vertical geophones in seismic refraction studies to identify the first arrivals and believed that the first arrivals could not be reliably picked from the seismic refraction data obtained with these geophones. Within the scope of this study, the effect of geophone center frequency on first arrivals of seismic refraction data was investigated. In study, synthetic seismic traces calculated for three different vertical component geophones with 4.5, 14 and 40 Hz center frequencies and real seismic refraction data collected in two different areas with 4.5-14 Hz, 4.5-40 Hz geophone pairs produced by different companies were used. The first arrival time analysis on synthetic and both real data significantly indicated that the first arrival times are independent of the center frequencies of the used geophones. Therefore, the first arrival times of seismic refraction data collected with same field parameters but with different center frequency geophones do not demonstrate changing. The only difference seen for these data is increasing of amplitudes in spectrum around center frequency of geophone, however it could not affect the first arrivals. Consequently, it has been shown in the proposed study that a single geophone set (e.g., 4.5 Hz) will be adequate in acquisition of both multi-channel surface wave and traditional seismic refraction data, and logistics of different geophone sets are not needed.

References

  • Aldridge, D.F., 1990. The Berlage wavelet. Geophysıcs 55, 1508–1511. https://doi.org/10.1190/1.1442799
  • Babacan, A.E., Gelisli, K., Ersoy, H., 2014. Seismic tomography and surface wave analysis based methodologies on evaluation of geotechnical properties of volcanic rocks: A case study. J. Earth Sci. 25, 348–356. https://doi.org/10.1007/s12583-014-0417-7
  • Douglas, A., Bowers, D., Young, J.B., 1997. On the onset of P seismograms. Geophysical Journal International 129, 681–690. https://doi.org/10.1111/j.1365-246X.1997.tb04503.x
  • Ernest, M.H., 1979. Geophone with damping coil. US4159464A.
  • Grit, M., Kanli, A.I., 2016. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul–Turkey. Open Geosciences 8, 161–173. https://doi.org/10.1515/geo-2016-0017
  • Hall, J.E.M., 1975. Geophone casings. US3930218A.
  • Hons, M.S., 2008. Seismic sensing: comparison of geophones and accelerometers using laboratory and field data. Library and Archives Canada = Bibliothèque et Archives Canada, Ottawa.
  • Jeffreys, H., 1932. Handbuch der Geophysik. Nature 129, 487–488. https://doi.org/10.1038/129487a0
  • Miller, R.D., Pullan, S.E., Steeples, D.W., Hunter, J.A., 1992. Field comparison of shallow seismic sources near Chino, California. GEOPHYSICS 57, 693–709. https://doi.org/10.1190/1.1443283
  • Pugin, A.J.M., Larson, T.H., Sargent, S.L., McBride, J.H., Bexfield, C.E., 2004. Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois, U.S. The Leading Edge 23, 677–682. https://doi.org/10.1190/1.1776740
  • Senkaya, M., Karslı, H., 2014. A semi-automatic approach to identify first arrival time: the Cross-Correlation Technique. Earth Sciences Research Journal 18.
  • Smith, D., Evancich, N., McLoughlin, M., Wenstrand, D., 2004. Digital geophone system. US20040252585A1.
  • Sudarshan, S.K.V., Huang, L., Li, C., Stewart, R.R., Becker, A., 2016. Seismic surveying with drone-mounted geophones. 2016 IEEE International Conference on Automation Science and Engineering (CASE) 1354–1359. https://doi.org/10.1109/COASE.2016.7743566
  • Tsoflias, G.P., Steeples, D.W., Czarnecki, G.P., Sloan, S.D., Eslick, R.C., 2006. Automatic deployment of a 2-D geophone array for efficient ultra-shallow seismic imaging. Geophysical Research Letters 33. https://doi.org/10.1029/2006GL025902
  • URL-1, H., n.d. English: Geophone by SERCEL [WWW Document]. URL https://commons.wikimedia.org/wiki/File:Geophone_hg.jpg (accessed 9.28.20).
  • URL-2, n.d. Geophones [WWW Document]. URL https://vibration.desy.de/equipment/geophones/ (accessed 2.17.21).
  • URL-3, n.d. URL https://www.crewes.org/ResearchLinks/Converted_Waves/Page2.php (accessed 2.17.21).
  • Veen, M. van der, Green, A.G., 1998. Land streamer for shallow seismic data acquisition; evaluation of gimbal-mounted geophones. Geophysics 63, 1408–1413. https://doi.org/10.1190/1.1444442
  • Woo, D.M., Woodall, J.C., 1992. Geophone. US5119345A.
  • Yalcinkaya, E., Alp, H., Ozel, O., Gorgun, E., Martino, S., Lenti, L., Bourdeau, C., Bigarre, P., Coccia, S., 2016. Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey. Journal of Applied Geophysics 134, 23–35. https://doi.org/10.1016/j.jappgeo.2016.08.012
  • Yalcinkaya, E., Tekebaş, S., Arslan, M.S., 2018. Spac Analizlerinde Kırılma Jeofonlarının Kullanımı. Presented at the Türkiye Ulusal Jeodezi ve Jeofizik Birliği Bilimsel Kongresi, İzmir.

SİSMİK KIRILMA VERİLERİNDE JEOFON MERKEZ FREKANSININ İLK VARIŞ ZAMANLARI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ

Year 2021, , 880 - 893, 21.09.2021
https://doi.org/10.21923/jesd.890520

Abstract

Ülkemizde, arazide gerçekleştirilen ya da kamu kurumlarınca kontrol edilen Jeofizik çalışmalarda çok kanallı yüzey dalgası ölçümü için genellikle 4.5Hz’ lik düşey bileşen jeofonlar kullanılmaktadır. Ancak, bazı kamu kurumları 4.5Hz düşey jeofonlarla, ilk varışların belirlenmesi amacıyla sismik kırılma çalışmaları yapılmasına izin vermemekte ve ilk varışların bu jeofonlarla elde edilen sismik kırılma verilerinden güvenilir şekilde okunamayacağını düşünmektedir. Bu çalışma kapsamında, sismik kırılma verilerinde jeofon merkez frekansının ilk varışlar üzerindeki etkisi araştırılmıştır. Çalışmada, 4.5, 14 ve 40 Hz merkez frekanslı üç farklı düşey bileşen jeofon için hesaplanan sentetik sismik izler ve iki farklı sahada, farklı üreticilere ait sırasıyla 4.5-14 Hz, 4.5-40 Hz jeofon çiftleri ile toplanan gerçek sismik kırılma verileri kullanılmıştır. Sentetik ve tüm saha verileri üzerinde yapılan ilk varış analizleri açık şekilde göstermiştir ki, sismik kırılma verilerinden elde edilecek ilk varışlar, kullanılan jeofonların merkez frekanslarından bağımsızdır. Dolayısıyla, aynı saha parametreleri ile farklı merkez frekanslı jeofonlarla toplanan sismik kırılma verilerinin ilk varış zamanları değişiklik göstermemektedir. Bu tip veri setlerinde görülebilecek tek fark, kayıt edilen verinin genlik spektrumunda merkez frekans etrafındaki genliğin artması olacaktır, ancak bu durum ilk varış zamanlarını etkilememektedir. Sonuç olarak, sismik kırılma arazi çalışmalarında hem çok kanallı yüzey dalgası hem de geleneksel sismik kırılma verilerinin toplanmasında, farklı jeofon setlerinin lojistiğine ihtiyaç olmayıp, tek bir jeofon setinin (örneğin 4.5 Hz) yeterli olacağı bu çalışmayla gösterilmiştir.

References

  • Aldridge, D.F., 1990. The Berlage wavelet. Geophysıcs 55, 1508–1511. https://doi.org/10.1190/1.1442799
  • Babacan, A.E., Gelisli, K., Ersoy, H., 2014. Seismic tomography and surface wave analysis based methodologies on evaluation of geotechnical properties of volcanic rocks: A case study. J. Earth Sci. 25, 348–356. https://doi.org/10.1007/s12583-014-0417-7
  • Douglas, A., Bowers, D., Young, J.B., 1997. On the onset of P seismograms. Geophysical Journal International 129, 681–690. https://doi.org/10.1111/j.1365-246X.1997.tb04503.x
  • Ernest, M.H., 1979. Geophone with damping coil. US4159464A.
  • Grit, M., Kanli, A.I., 2016. Integrated Seismic Survey for Detecting Landslide Effects on High Speed Rail Line at Istanbul–Turkey. Open Geosciences 8, 161–173. https://doi.org/10.1515/geo-2016-0017
  • Hall, J.E.M., 1975. Geophone casings. US3930218A.
  • Hons, M.S., 2008. Seismic sensing: comparison of geophones and accelerometers using laboratory and field data. Library and Archives Canada = Bibliothèque et Archives Canada, Ottawa.
  • Jeffreys, H., 1932. Handbuch der Geophysik. Nature 129, 487–488. https://doi.org/10.1038/129487a0
  • Miller, R.D., Pullan, S.E., Steeples, D.W., Hunter, J.A., 1992. Field comparison of shallow seismic sources near Chino, California. GEOPHYSICS 57, 693–709. https://doi.org/10.1190/1.1443283
  • Pugin, A.J.M., Larson, T.H., Sargent, S.L., McBride, J.H., Bexfield, C.E., 2004. Near-surface mapping using SH-wave and P-wave seismic land-streamer data acquisition in Illinois, U.S. The Leading Edge 23, 677–682. https://doi.org/10.1190/1.1776740
  • Senkaya, M., Karslı, H., 2014. A semi-automatic approach to identify first arrival time: the Cross-Correlation Technique. Earth Sciences Research Journal 18.
  • Smith, D., Evancich, N., McLoughlin, M., Wenstrand, D., 2004. Digital geophone system. US20040252585A1.
  • Sudarshan, S.K.V., Huang, L., Li, C., Stewart, R.R., Becker, A., 2016. Seismic surveying with drone-mounted geophones. 2016 IEEE International Conference on Automation Science and Engineering (CASE) 1354–1359. https://doi.org/10.1109/COASE.2016.7743566
  • Tsoflias, G.P., Steeples, D.W., Czarnecki, G.P., Sloan, S.D., Eslick, R.C., 2006. Automatic deployment of a 2-D geophone array for efficient ultra-shallow seismic imaging. Geophysical Research Letters 33. https://doi.org/10.1029/2006GL025902
  • URL-1, H., n.d. English: Geophone by SERCEL [WWW Document]. URL https://commons.wikimedia.org/wiki/File:Geophone_hg.jpg (accessed 9.28.20).
  • URL-2, n.d. Geophones [WWW Document]. URL https://vibration.desy.de/equipment/geophones/ (accessed 2.17.21).
  • URL-3, n.d. URL https://www.crewes.org/ResearchLinks/Converted_Waves/Page2.php (accessed 2.17.21).
  • Veen, M. van der, Green, A.G., 1998. Land streamer for shallow seismic data acquisition; evaluation of gimbal-mounted geophones. Geophysics 63, 1408–1413. https://doi.org/10.1190/1.1444442
  • Woo, D.M., Woodall, J.C., 1992. Geophone. US5119345A.
  • Yalcinkaya, E., Alp, H., Ozel, O., Gorgun, E., Martino, S., Lenti, L., Bourdeau, C., Bigarre, P., Coccia, S., 2016. Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey. Journal of Applied Geophysics 134, 23–35. https://doi.org/10.1016/j.jappgeo.2016.08.012
  • Yalcinkaya, E., Tekebaş, S., Arslan, M.S., 2018. Spac Analizlerinde Kırılma Jeofonlarının Kullanımı. Presented at the Türkiye Ulusal Jeodezi ve Jeofizik Birliği Bilimsel Kongresi, İzmir.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Mustafa Şenkaya 0000-0003-2152-3479

Hakan Karslı 0000-0002-7758-1363

Publication Date September 21, 2021
Submission Date March 3, 2021
Acceptance Date June 22, 2021
Published in Issue Year 2021

Cite

APA Şenkaya, M., & Karslı, H. (2021). SİSMİK KIRILMA VERİLERİNDE JEOFON MERKEZ FREKANSININ İLK VARIŞ ZAMANLARI ÜZERİNDEKİ ETKİSİNİN İNCELENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(3), 880-893. https://doi.org/10.21923/jesd.890520