Research Article
BibTex RIS Cite

EMİRDAĞ-KARAAĞAÇ YERALTI SUYU POTANSİYELİNİN ELEKTRİK ÖZDİRENÇ YÖNTEMLER İLE ARAŞTIRILMASI

Year 2021, , 1267 - 1275, 20.12.2021
https://doi.org/10.21923/jesd.929474

Abstract

Kayaçların gözenekliliği ve geçirgenliği gibi hidrojeoloji için önemli olan jeolojik oluşum özelliklerinin çoğu elektriksel iletkenlik ile ilişkilidir. Bu sebeple, jeofizik arama tekniklerinden elektrik özdirenç yöntemi yeraltı suyu araştırmaları için etkilidir. Özdirenç yöntemlerinden düşey elektrik sondajı (DES) yöntemi, su taşıyan oluşumun kalınlığını ve derinliğini belirlemek için kullanılmaktadır. Diğer bir özdirenç yöntem ise daha geniş alanlarda daha hızlı ve sağlıklı ölçüm almayı sağlayan çok-elektrotlu sistemleri kullanan elektrik özdirenç tomografidir (EÖT). Bu çalışmada, Afyonkarahisar-Emirdağ (Karaağaç) bölgesindeki muhtemel yeraltı suyu bulunduran akifer yapılar, DES ve EÖT yöntemleri kullanılarak araştırılmıştır. 7 istasyonda DES verilerinin ve 4 profilde EÖT verilerinin değerlendirilmesi ile, çalışma alanındaki muhtemel yeraltı suyu içeren akifer yapıların dağılımı belirlenmiştir. Yeraltı suyu sağlamada farklı derinliklerdeki çakıllı birimler ve kireçtaşı iyi akifer özellik göstermektedir.

References

  • Aksever F., 2019. Hydrogeochemical characterization and water quality assessment of springs in the Emirdağ (Afyonkarahisar) basin, Turkey. Arabian Journal of Geosciences, 12: 780, https://doi.org/10.1007/s12517-019-4942-7.
  • Anon, 1997. Groundwater Storage. co. portage.wi.us, p.1. Available at: http://www.co.portage.wi.us/groundwater/undrstnd/aquifer.htm.
  • Barker R., 1981. The offset system of electrical resistivity sounding and its use with a multicore cable. Geophys Prospect 29:128–143.
  • Dahlin, T., 1993. On the automation of 2Dresistivity surveying for engineering and environmental applications. PhD Thesis. Department of Engineering Geology, Lund Institute of Technology, Lund University, Sweden. ISRN: LUTVDG/TVTG1007SE. ISBN 9162810324, 187 pp
  • Fitterman, D.V., Stewart, M.T., 1986. Transient electromagnetic sounding for groundwater. Geophysics, 51(4), pp.995–1005.
  • Griffiths, D. H., Barker, R. D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology, Journal of Applied Geophysics, 29, 211-226.
  • Kalisperi D., Soupios P., Kouli M., Barsukov P., Kershaw S., Collins P., Vallianatos F., 2009. Coastal aquifer assessment using geophysical methods (TEM, VES), case study: Northern Crete, Greece, 3rd IASME/WSEAS international conference on geology and seismology (GES ‘09) Cambridge, UK, 24–26 February 2009
  • Lashkaripour, G.R., 2003. An investigation of groundwater condition by geoelectric resistivity method: a case study in Korin aquifer, Southeast Iran. J. Spatial Hydrol. 3(1), 1–5.
  • Lashkaripour G.R., Ghafoori M., Dehghani A., 2005. Electrical resistivity survey for predicting Samsor aquifer properties, Southeast Iran. Geophysical Research Abstracts, European Geosciences Union 7, 1–5.
  • Loke M.H., Barker R.D., 1996a. Rapid least squares inversion of apparent resistivity pseudosections by a quasi Newton method. Geophys Prospect 44, 131–152.
  • Loke M.H., Barker R.D., 1996b. Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44, 499–523.
  • Loke, M.H., 2020. Tutorial : 2-D and 3-D electrical imaging surveys. www.geotomosoft.com.
  • Oseji J.O., Asokhia M.B., Okolie E.C., 2006. Determination of groundwater potential in Obiaruku and environs using surface geoelectric sounding. Environmentalist 26, 301–308
  • Sahu P.C., Sahoo H., 2006. Targeting groundwater in tribal dominated Bonai area of drought-prone Sundargarh District, Orissa, India. A combined geophysical and remote sensing approach. J Hum Ecol, 20, 109–115.
  • Shankar K.R., 1994. Affordable water supply and sanitation. In: Groundwater exploration 20th WEDC Conference Colombo, Sri Lanka, 1994, 225–228.
  • Soupios P., Kouli M., Vallianatos F., Vafidis A., Stavroulakis G., 2007. Estimation of aquifer parameters from surficial geophysical methods. A case study of Keritis Basin in Crete. J Hydrol 338, 122–131
  • Stampolidis A., Tsourlos P., Soupios P., Mimides T.H., Tsokas G., Vargemezis G., Vafidis A., 2005. Integrated geophysical investigation around the brackish spring of Rina, Kalimnos Isl., SW Greece. J Balk Geophys Soc 8(3), 63–73.
  • Zohdy, A.A., Eaton, C.P., Mabey, D.R., 1974. Application of surface geophysics to groundwater investigation. Tech. Water Resources Investigation, Washington, U.S Geological Survey, pp. 2401–2543.
  • Zohdy, A. A. R., 1989. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves, Geophysics, 54, 2, 245-253.

INVESTIGATION OF EMİRDAĞ-KARAAĞAÇ UNDERGROUND WATER POTENTIAL WITH ELECTRICAL RESISTIVITY METHODS

Year 2021, , 1267 - 1275, 20.12.2021
https://doi.org/10.21923/jesd.929474

Abstract

Many of the geological formation properties important to hydrogeology, such as the porosity and permeability of rocks, are related to electrical conductivity. Therefore, one of the geophysical exploration techniques, the electrical resistivity method is effective for groundwater exploration. One of the resistivity methods, the vertical electrical sounding (VES) method is used to determine the thickness and depth of the water-bearing formation. Another resistivity method is electrical resistivity tomography (ERT), which uses multi-electrode systems that provide faster and more reliable measurements over larger areas. In this study, aquifer structures that contain possible groundwater in Afyonkarahisar-Emirdağ (Karaağaç) region were investigated using VES and ERT methods. By evaluating VES data in 7 stations and ERT data in 4 profiles, the distribution of aquifer structures containing possible groundwater in the study area was determined. Gravel units at different depths and limestone show good aquifer properties in providing groundwater.

References

  • Aksever F., 2019. Hydrogeochemical characterization and water quality assessment of springs in the Emirdağ (Afyonkarahisar) basin, Turkey. Arabian Journal of Geosciences, 12: 780, https://doi.org/10.1007/s12517-019-4942-7.
  • Anon, 1997. Groundwater Storage. co. portage.wi.us, p.1. Available at: http://www.co.portage.wi.us/groundwater/undrstnd/aquifer.htm.
  • Barker R., 1981. The offset system of electrical resistivity sounding and its use with a multicore cable. Geophys Prospect 29:128–143.
  • Dahlin, T., 1993. On the automation of 2Dresistivity surveying for engineering and environmental applications. PhD Thesis. Department of Engineering Geology, Lund Institute of Technology, Lund University, Sweden. ISRN: LUTVDG/TVTG1007SE. ISBN 9162810324, 187 pp
  • Fitterman, D.V., Stewart, M.T., 1986. Transient electromagnetic sounding for groundwater. Geophysics, 51(4), pp.995–1005.
  • Griffiths, D. H., Barker, R. D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology, Journal of Applied Geophysics, 29, 211-226.
  • Kalisperi D., Soupios P., Kouli M., Barsukov P., Kershaw S., Collins P., Vallianatos F., 2009. Coastal aquifer assessment using geophysical methods (TEM, VES), case study: Northern Crete, Greece, 3rd IASME/WSEAS international conference on geology and seismology (GES ‘09) Cambridge, UK, 24–26 February 2009
  • Lashkaripour, G.R., 2003. An investigation of groundwater condition by geoelectric resistivity method: a case study in Korin aquifer, Southeast Iran. J. Spatial Hydrol. 3(1), 1–5.
  • Lashkaripour G.R., Ghafoori M., Dehghani A., 2005. Electrical resistivity survey for predicting Samsor aquifer properties, Southeast Iran. Geophysical Research Abstracts, European Geosciences Union 7, 1–5.
  • Loke M.H., Barker R.D., 1996a. Rapid least squares inversion of apparent resistivity pseudosections by a quasi Newton method. Geophys Prospect 44, 131–152.
  • Loke M.H., Barker R.D., 1996b. Practical techniques for 3D resistivity surveys and data inversion. Geophys Prospect 44, 499–523.
  • Loke, M.H., 2020. Tutorial : 2-D and 3-D electrical imaging surveys. www.geotomosoft.com.
  • Oseji J.O., Asokhia M.B., Okolie E.C., 2006. Determination of groundwater potential in Obiaruku and environs using surface geoelectric sounding. Environmentalist 26, 301–308
  • Sahu P.C., Sahoo H., 2006. Targeting groundwater in tribal dominated Bonai area of drought-prone Sundargarh District, Orissa, India. A combined geophysical and remote sensing approach. J Hum Ecol, 20, 109–115.
  • Shankar K.R., 1994. Affordable water supply and sanitation. In: Groundwater exploration 20th WEDC Conference Colombo, Sri Lanka, 1994, 225–228.
  • Soupios P., Kouli M., Vallianatos F., Vafidis A., Stavroulakis G., 2007. Estimation of aquifer parameters from surficial geophysical methods. A case study of Keritis Basin in Crete. J Hydrol 338, 122–131
  • Stampolidis A., Tsourlos P., Soupios P., Mimides T.H., Tsokas G., Vargemezis G., Vafidis A., 2005. Integrated geophysical investigation around the brackish spring of Rina, Kalimnos Isl., SW Greece. J Balk Geophys Soc 8(3), 63–73.
  • Zohdy, A.A., Eaton, C.P., Mabey, D.R., 1974. Application of surface geophysics to groundwater investigation. Tech. Water Resources Investigation, Washington, U.S Geological Survey, pp. 2401–2543.
  • Zohdy, A. A. R., 1989. A new method for the automatic interpretation of Schlumberger and Wenner sounding curves, Geophysics, 54, 2, 245-253.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Articles
Authors

Sedat Yılmaz 0000-0002-9841-4900

Emine Yıldırım This is me 0000-0003-3664-6594

Publication Date December 20, 2021
Submission Date April 29, 2021
Acceptance Date August 2, 2021
Published in Issue Year 2021

Cite

APA Yılmaz, S., & Yıldırım, E. (2021). EMİRDAĞ-KARAAĞAÇ YERALTI SUYU POTANSİYELİNİN ELEKTRİK ÖZDİRENÇ YÖNTEMLER İLE ARAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(4), 1267-1275. https://doi.org/10.21923/jesd.929474