Research Article
BibTex RIS Cite

ÇOK AMAÇLI MÜHENDİSLİK TASARIMI VE KISITLI PROBLEMLER İÇİN HİBRİT BİRÇOK AMAÇLI OPTİMİZASYON ALGORİTMASI

Year 2021, , 1200 - 1211, 20.12.2021
https://doi.org/10.21923/jesd.930887

Abstract

Gerçek dünya problemlerine bakıldığında çoğunun birden fazla hedefi gerçekleştirmeye yönelik olduğu görülmektedir. Bu problemlerin çözümü için kullanılan birçok klasik yöntem mevcuttur. Klasik yöntemlerin çözüm geliştirme noktasında farklı sebeplerden dolayı eksik kalması araştırmacıları farklı yaklaşımlar geliştirmeye yöneltmiştir. Genellikle doğada sürü halinde yaşayan hayvanların veya farklı yaşam alanlarına sahip bitkilerin davranışlarından esinlenilerek geliştirilen doğa esinli algoritmalar bu yaklaşımlardan bir tanesi olmuştur. Bu çalışmada, tek amaçlı problemlerin çözümü için geliştirilmiş olan kurbağa sıçrama (SFLA) ve gri kurt optimizasyonu (GWO) algoritmaları hibrit bir şekilde kullanılarak çok amaçlı optimizasyon problemlerine uygulanmıştır. Önerilen algoritma bazı çok amaçlı mühendislik tasarımı ve çok amaçlı kısıtlı problemlerin üzerinde uygulanmıştır. Önerilen algoritmanın performansı NSGA-II, IBEA, MOCell ve PAES algoritmalarının performansı ile kıyaslanmıştır. Performans karşılaştırma metriği olarak HV, IGD, Spread ve Epsilon metrikleri kullanılmıştır. Performans analizi; elde edilen ortalama sonuçlar, Friedman sıralama testi ve Wilcoxon anlamlılık testi ile yapılmıştır. Deneysel sonuçlar, önerilen algoritmanın diğer algoritmalardan daha başarılı sonuçlar ürettiğini göstermiştir.

References

  • Babalik, A., Ozkis, A., Uymaz, S. A. ve Kiran, M. S., 2018, A multi-objective artificial algae algorithm, Applied Soft Computing, 68, 377-395.
  • Coello, C. A. C. ve Cortés, N. C., 2005, Solving multiobjective optimization problems using an artificial immune system, Genetic programming and evolvable machines, 6 (2), 163-190.
  • Coello, C. A. C., Lamont, G. B. ve Van Veldhuizen, D. A., 2007, Evolutionary algorithms for solving multi-objective problems, Springer, p.
  • Deb, K., 2011, Multi-objective optimisation using evolutionary algorithms: an introduction, In: Multi-objective evolutionary optimisation for product design and manufacturing, Eds: Springer, p. 3-34.
  • Du, P., Wang, J., Hao, Y., Niu, T. ve Yang, W., 2020, A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting, Applied Soft Computing, 96, 106620.
  • Durillo, J. J. ve Nebro, A. J., 2011, jMetal: A Java framework for multi-objective optimization, Advances in engineering software, 42 (10), 760-771.
  • Eusuff, M., Lansey, K. ve Pasha, F., 2006, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization, Engineering optimization, 38 (2), 129-154.
  • Friedman, M., 1937, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the american statistical association, 32 (200), 675-701.
  • Golberg, D. E., 1989, Genetic algorithms in search, optimization, and machine learning, Addion wesley, 1989 (102), 36.
  • Holland, J. H., 1992, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press, p.
  • Johnson, R. A. ve Bhattacharyya, G. K., 2019, Statistics: principles and methods, John Wiley & Sons, p.
  • Karaboga, D., 2005, An idea based on honey bee swarm for numerical optimization, Citeseer.
  • Karakoyun, M., Ozkis, A. ve Kodaz, H., 2020, A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multi-objective optimization problems, Applied Soft Computing, 96, 106560.
  • Kennedy, J. ve Eberhart, R., 1995, Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks, 1942-1948.
  • Knowles, J. ve Corne, D., 1999, The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 98-105.
  • Kumawat, I. R., Nanda, S. J. ve Maddila, R. K., 2017, Multi-objective whale optimization, Tencon 2017-2017 ieee region 10 conference, 2747-2752.
  • Li, X., 2003, A non-dominated sorting particle swarm optimizer for multiobjective optimization, Genetic and evolutionary computation conference, 37-48.
  • Mirjalili, S., Jangir, P. ve Saremi, S., 2017, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems, Applied Intelligence, 46 (1), 79-95.
  • Mirjalili, S., Mirjalili, S. M. ve Lewis, A., 2014, Grey wolf optimizer, Advances in engineering software, 69, 46-61.
  • Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B. ve Alba, E., 2007, Design issues in a multiobjective cellular genetic algorithm, International Conference on Evolutionary Multi-Criterion Optimization, 126-140.
  • Osyczka, A., 1985, Multicriteria optimization for engineering design, In: Design optimization, Eds: Elsevier, p. 193-227.
  • Özkış, A. ve Babalık, A., 2017, A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm, Information Sciences, 402, 124-148.
  • Özkış, A., 2017, Girdap arama ve yapay alg algoritmalarının çok amaçlı optimizasyon problemlerine uyarlanması, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Sağ, T., 2008, Çok kriterli optimizasyon için genetik algoritma yaklaşımları, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Srinivas, N. ve Deb, K., 1994, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary computation, 2 (3), 221-248.
  • Tawhid, M. A. ve Savsani, V., 2018, A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems, Applied Intelligence, 48 (10), 3762-3781.
  • Uymaz, S. A., Tezel, G. ve Yel, E., 2015, Artificial algae algorithm (AAA) for nonlinear global optimization, Applied Soft Computing, 31, 153-171.
  • Zitzler, E. ve Künzli, S., 2004, Indicator-based selection in multiobjective search, International conference on parallel problem solving from nature, 832-842.
  • Zitzler, E. ve Thiele, L., 1999, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE transactions on Evolutionary Computation, 3 (4), 257-271.

A HYBRID MULTI OBJECTIVE OPTIMIZATION ALGORITHM FOR MULTI OBJECTIVE ENGINEERING DESIGN AND CONSTRAINED PROBLEMS

Year 2021, , 1200 - 1211, 20.12.2021
https://doi.org/10.21923/jesd.930887

Abstract

When looking to the real-world problems, it is seen that many of them are aimed at achieving more than one goal. The deficiency of the classical methods at the point of developing solutions due to different reasons has led researchers to develop different approaches. Nature-inspired algorithms developed by taking inspiration from the behavior of animals that generally live with a swarm in nature or plants with different habitats have been one of these approaches. In this study, shuffled frog leaping (SFLA) and gray wolf optimizer (GWO) algorithms, which developed for solving single-objective problems, are applied to multi-objective optimization problems in a hybrid manner. The proposed algorithm has been applied on some multi-objective engineering design and multi-objective constrained problems. The performance of the proposed algorithm has been compared with the performance of NSGA-II, IBEA, MOCell and PAES algorithms. HV, IGD, Spread and Epsilon metrics are used as performance comparison metrics. Performance analysis was performed using the average results obtained, Friedman ranking test and Wilcoxon significance test. Experimental results have shown that the proposed algorithm generates more successful results than other algorithms.

References

  • Babalik, A., Ozkis, A., Uymaz, S. A. ve Kiran, M. S., 2018, A multi-objective artificial algae algorithm, Applied Soft Computing, 68, 377-395.
  • Coello, C. A. C. ve Cortés, N. C., 2005, Solving multiobjective optimization problems using an artificial immune system, Genetic programming and evolvable machines, 6 (2), 163-190.
  • Coello, C. A. C., Lamont, G. B. ve Van Veldhuizen, D. A., 2007, Evolutionary algorithms for solving multi-objective problems, Springer, p.
  • Deb, K., 2011, Multi-objective optimisation using evolutionary algorithms: an introduction, In: Multi-objective evolutionary optimisation for product design and manufacturing, Eds: Springer, p. 3-34.
  • Du, P., Wang, J., Hao, Y., Niu, T. ve Yang, W., 2020, A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting, Applied Soft Computing, 96, 106620.
  • Durillo, J. J. ve Nebro, A. J., 2011, jMetal: A Java framework for multi-objective optimization, Advances in engineering software, 42 (10), 760-771.
  • Eusuff, M., Lansey, K. ve Pasha, F., 2006, Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization, Engineering optimization, 38 (2), 129-154.
  • Friedman, M., 1937, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the american statistical association, 32 (200), 675-701.
  • Golberg, D. E., 1989, Genetic algorithms in search, optimization, and machine learning, Addion wesley, 1989 (102), 36.
  • Holland, J. H., 1992, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press, p.
  • Johnson, R. A. ve Bhattacharyya, G. K., 2019, Statistics: principles and methods, John Wiley & Sons, p.
  • Karaboga, D., 2005, An idea based on honey bee swarm for numerical optimization, Citeseer.
  • Karakoyun, M., Ozkis, A. ve Kodaz, H., 2020, A new algorithm based on gray wolf optimizer and shuffled frog leaping algorithm to solve the multi-objective optimization problems, Applied Soft Computing, 96, 106560.
  • Kennedy, J. ve Eberhart, R., 1995, Particle swarm optimization, Proceedings of ICNN'95-international conference on neural networks, 1942-1948.
  • Knowles, J. ve Corne, D., 1999, The pareto archived evolution strategy: A new baseline algorithm for pareto multiobjective optimisation, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), 98-105.
  • Kumawat, I. R., Nanda, S. J. ve Maddila, R. K., 2017, Multi-objective whale optimization, Tencon 2017-2017 ieee region 10 conference, 2747-2752.
  • Li, X., 2003, A non-dominated sorting particle swarm optimizer for multiobjective optimization, Genetic and evolutionary computation conference, 37-48.
  • Mirjalili, S., Jangir, P. ve Saremi, S., 2017, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems, Applied Intelligence, 46 (1), 79-95.
  • Mirjalili, S., Mirjalili, S. M. ve Lewis, A., 2014, Grey wolf optimizer, Advances in engineering software, 69, 46-61.
  • Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B. ve Alba, E., 2007, Design issues in a multiobjective cellular genetic algorithm, International Conference on Evolutionary Multi-Criterion Optimization, 126-140.
  • Osyczka, A., 1985, Multicriteria optimization for engineering design, In: Design optimization, Eds: Elsevier, p. 193-227.
  • Özkış, A. ve Babalık, A., 2017, A novel metaheuristic for multi-objective optimization problems: The multi-objective vortex search algorithm, Information Sciences, 402, 124-148.
  • Özkış, A., 2017, Girdap arama ve yapay alg algoritmalarının çok amaçlı optimizasyon problemlerine uyarlanması, Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Sağ, T., 2008, Çok kriterli optimizasyon için genetik algoritma yaklaşımları, Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
  • Srinivas, N. ve Deb, K., 1994, Muiltiobjective optimization using nondominated sorting in genetic algorithms, Evolutionary computation, 2 (3), 221-248.
  • Tawhid, M. A. ve Savsani, V., 2018, A novel multi-objective optimization algorithm based on artificial algae for multi-objective engineering design problems, Applied Intelligence, 48 (10), 3762-3781.
  • Uymaz, S. A., Tezel, G. ve Yel, E., 2015, Artificial algae algorithm (AAA) for nonlinear global optimization, Applied Soft Computing, 31, 153-171.
  • Zitzler, E. ve Künzli, S., 2004, Indicator-based selection in multiobjective search, International conference on parallel problem solving from nature, 832-842.
  • Zitzler, E. ve Thiele, L., 1999, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE transactions on Evolutionary Computation, 3 (4), 257-271.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Computer Software
Journal Section Research Articles
Authors

Murat Karakoyun 0000-0002-0677-9313

Halife Kodaz 0000-0001-8602-4262

Publication Date December 20, 2021
Submission Date May 1, 2021
Acceptance Date August 31, 2021
Published in Issue Year 2021

Cite

APA Karakoyun, M., & Kodaz, H. (2021). ÇOK AMAÇLI MÜHENDİSLİK TASARIMI VE KISITLI PROBLEMLER İÇİN HİBRİT BİRÇOK AMAÇLI OPTİMİZASYON ALGORİTMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(4), 1200-1211. https://doi.org/10.21923/jesd.930887