Review
BibTex RIS Cite

DISINTEGRATION OF WASTE BIOLOGICAL SLUDGES BY MICROWAVE RADIATION BEFORE ANAEROBIC DIGESTION

Year 2022, , 740 - 760, 30.06.2022
https://doi.org/10.21923/jesd.931036

Abstract

The growth of population in the urban areas leads to an increase in the biological sludge production in the municipal wastewater treatment plants (WWTP). The most important problems on the biosludge management in the WWTP are the high disposal cost and legal constraint. In recent years, experimental studies have been carried out to develop more environmental friendlly and economical methods in order to reduce the amount of waste sludge production in the WWTP and increase in the biogas volume produced in an anaerobic digestion unit. The long hydraulic retention time required for the biodegradation in the anaerobic digestion reactor can be reduced by the disintegration of waste biological sludge (WBS). The disintegration of biosludge provides the release of organic and inorganic substances into the solution. An increase of organic substances concentration in the inlet of anaerobic reactor improves the digestion efficiency. In the disintegration process, a slow and partial degradable organic fractions of biosludge are converted into the readily biologically available compounds in the anaerobic digestion process. In order to improve the biogas production in the anaerobic sludge digestion, several disintegration methods such as thermal, chemical, mechanical, and advance oxidation processes or their combinations are applied. The main goal of the present review paper is to introduce the biological sludge disintegration by the microwave (MW) radiation considering the biogas production in the anaerobic digestion process. Under various operating conditions, the effectiveness of MW disintegration method was investigated in terms of heating principles, sludge disintegration, and biogas production. Additionally, the efficiency of hybrid systems such as MW/H2O2, MW/UV, etc. were compared with the singular MW radiation process.

References

  • Acquisto, B. A., Reimers, R. S., Smith, J. E., Pillai, S. D., 2006. Factors Affecting Disinfection and Stabilization of Sewage Sludge. Proceedings of the Water Environment Federation, (7), 5345-5361.
  • Ahn, J. H., Shin, S. G., Hwang, S., 2009. Effect Of Microwave Irradiation on the Disintegration and Acidogenesis of Municipal Secondary Sludge. Chemical Engineering Journal, 153(1–3), 145–150.
  • Ahn, J. H., Shin, S. G., Park, B. C., Hwang, S., 2011. Comparison of Municipal and Coke Wastewater Sludges in Disintegration and Acidogenesis by Microwave. Journal of Environmental Engineering, 137(8), 740-745.
  • Akgul, D., Cella, M. Eskicioglu, C., 2017. Influences of Low-Energy Input Microwave and Ultrasonic Pretreatments on Single-Stage and Temperature-Phased Anaerobic Digestion (TPAD) of Municipal Wastewater Sludge. Energy, 123(None), 271-282.
  • Alhraishawi, A. A., Alani, W. K., Chaichan, M. T., Jawad, R. S., 2020. Performance of Oil on Bio-Methane Creation Under Anaerobic Co-Fermentation Condition. Review. In IOP Conference Series: Materials Science and Engineering , 881, No. 1, P. 012189.
  • Alqaralleh, R. M., Kennedy, K., Delatolla, R., 2019. Microwave vs. Alkaline-Microwave Pretreatment for Enhancing Thickened Waste Activated Sludge and Fat, Oil, and Grease Solubilization, Degradation and Biogas Production. Journal of Environmental Management, 233, 378-392.
  • Andreottola, G., Foladori, P., 2006. A Review and Assessment of Emerging Technologies for the Minimization of Excess Sludge Production in Wastewater Treatment Plants. Journal of Environmental Science and Health Part A, 41(9), 1853-1872.
  • Appels, L., Baeyens, J., Degrève, J., Dewil, R., 2008. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Progress in Energy and Combustion Science, 34(6), 755-781.
  • Appels, L., Houtmeyers, S., Degrève, J., Van Impe, J., Dewil, R., 2013. Influence of Microwave Pre-Treatment on Sludge Solubilization and Pilot Scale Semi-Continuous Anaerobic Digestion. Bioresource Technology, 128, 598-603.
  • Baier, U., Schmidheiny, P., 1997. Enhanced Anaerobic Degradation of Mechanically Disintegrated Sludge. Water Science and Technology, 36(11), 137-143.
  • Banik, S. B. A. S. G. S., Bandyopadhyay, S., Ganguly, S., 2003. Bioeffects of Microwave–A Brief Review. Bioresource Technology, 87(2), 155-159.
  • Barber, W. P. F., 2012. Comparison of Thermal Destruction Technology for Complete Biosolids Processing, Https://Www.Waternz.Org.Nz/Article?Action=View&Article_İd=584.
  • Barber, W. P. F., 2014. Influence of Wastewater Treatment on Sludge Production and Processing, Water and Environment Journal, 28, 1–10.
  • Barber, W. P. F., 2016. Thermal Hydrolysis for Sewage Treatment: A Critical Review. Water Research, 104, 53-71.
  • Beszédes, S., Kertész, S., László, Z., Szabo, G., Hodur, C., 2009. Biogas Production of Ozone and/or Microwave-Pretreated Canned Maize Production Sludge. Ozone: Science & Engineering, 31(3), 257-261.
  • Beszédes, S., László, Z., Horváth, Z., Szabó, G. Hodúr, C., 2011. Comparison of the Effects of Microwave Irradiation with Different İIntensities on the Biodegradability of Sludge from the Dairy- and Meat Industry. Bioresource Technology, 102(2), 814-821.
  • Bi, X., Wang, P., Jiao, C., Cao, H., 2009. Degradation of Remazol Golden Yellow Dye Wastewater in Microwave Enhanced Clo2 Catalytic Oxidation Process. Journal of Hazardous Materials, 168(2-3), 895-900.
  • Bougrier, C., Battimelli, A., Delgenes, J. P., Carrere, H., 2007. Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment. Ozone: Science and Engineering, 29(3), 201-206.
  • Bozkurt, Y. C., Apul, O. G., 2019. Critical Review for Microwave Pretreatment of Waste-Activated Sludge Prior to Anaerobic Digestion. Current Opinion in Environmental Science and Health, 14, 1–9.
  • Brooks R.,1970. Heat Treatment of Sewage Sludge. Journal of Water Pollution Control Federation. 69(2), 221–31.
  • Büyükkoyuncu, D., 2012. Mikrodalganın Hacim İçerisinde Dağılımının Sıcaklık Profiline Etkisinin İncelenmesi. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi Fen Bilimleri Ensttüsü Makine Mühendisliği Anabilim Dalı, Türkiye, 157s.
  • Canales, A., Pareilleux, A., Rols, J. L., Huyard, A., 1994. Decreased Sludge Production Strategy for Domestic Wastewater Treatment. Water Science and Technology, 30(8), 97..
  • Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F., 2012. The Effects of Substrate Pre-Treatment on Anaerobic Digestion Systems: A Review. Waste Management, 32(9), 1634-1650.
  • Carrère, H., Bougrier, C., Castets, D., Delgenès, J. P., 2008. Impact of Initial Biodegradability on Sludge Anaerobic Digestion Enhancement by Thermal Pretreatment. Journal of Environmental Science and Health Part A, 43(13), 1551-1555.
  • Cella, M. A., Akgul, D., Eskicioglu, C., 2016. Assessment of Microbial Viability in Municipal Sludge Following Ultrasound and Microwave Pretreatments and Resulting Impacts on the Efficiency of Anaerobic Sludge Digestion. Applied Microbiology and Biotechnology, 100(6), 2855-2868.
  • Chan, W. I., Liao, P. H., Lo, K. V., 2010. Effects of Irradiation Intensity and pH on Nutrients Release and Solids Destruction of Waste Activated Sludge Using the Microwave‐Enhanced Advanced Oxidation Process. Water Environment Research, 82(11), 2229-2238.
  • Chan, W. I., Lo, K. V., Liao, P. H., 2007a . Solubilization of Blood Meal to be Used as a Liquid Fertilizer. Journal of Environmental Science and Health Part B, 42(4), 417-422.
  • Chan, W. I., Wong, W. T., Liao, P. H., Lo, K. V., 2007b. Sewage Sludge Nutrient Solubilization Using a Single-Stage Microwave Treatment. Journal of Environmental Science and Health Part A, 42(1), 59-63.
  • Chang, C. J., Tyagi, V. K., Lo, S. L., 2011. Effects of Microwave and Alkali Induced Pretreatment on Sludge Solubilization and Subsequent Aerobic Digestion. Bioresource Technology, 102(17), 7633-7640.
  • Chen ,SL., Lo ,SL., Chiueh ,PT., Kuan, WH., Hsieh CH., 2007 . The Assistance of MW Process in Sludge Stabilization with Sodium Sulfide and Sodium Phosphate. Journal of Hazardaous Materials, 147(3), 930–937.
  • Chen, J., Li, J., Zhang, X., Wu, Z., 2020. Pretreatments for Enhancing Sewage Sludge Reduction and Reuse in Lipid Production. Biotechnology for Biofuels, 13(1), 1-10.
  • Chen, Y., Cheng, J. J., Creamer, K. S.2., 2008. Inhibition of Anaerobic Digestion Process: A Review. Bioresource Technology, 99(10), 4044-4064.
  • Christodoulou, A., Stamatelatou, K., 2016. Overview of Legislation on Sewage Sludge Management in Developed Countries Worldwide. Water Science and Technology, 73(3), 453-462.
  • Cid, B. P., Alborés, A. F., Gómez, E. F., López, E. F., 2001. Use of Microwave Single Extractions for Metal Fractionation in Sewage Sludge Samples. Analytica Chimica Acta, 431(2), 209-218.
  • Clark, D. E., Folz, D. C., West, J. K., 2000. Processing Materials with Microwave Energy. Materials Science and Engineering: A, 287(2), 153-158.
  • Coelho, N. M., Kennedy, K. J.,Droste, R. L., 2011. Effect of Microwave Athermal and Thermal Radiation in Wastewater Sludge Properties. Journal of Environmental Science and Engineering, 5(6).
  • Colón, J., Alarcón, M., Healy, M.G., Namli, A., Ponsá, S., Dilek Sanin, F., Taya, C., 2017. Chapter 14: Producing Sludge for Agricultural Applications. J. M. Lema, S. Suarez Martinez (Edt.), Handbook of Innovative Wastewater Treatment and Resource Recovery Technologies,(P. 296–322) . London, UK: IWA Publishing.
  • David, H., Palanisamy, K., Normanbhay, S., 2014 . Pre-Treatment of Sewage Sludge to Enhance Biogas Production to Generate Green Energy for Reduction of Carbon Footprint in Sewage Treatment Plant (STP). In 2014 International Conference And Utility Exhibition on Green Energy for Sustainable Development (ICUE) (Pp. 1-5). IEEE.15).
  • Deepanraj, B., Sivasubramanian, V., Jayaraj, S., 2017. Effect of Substrate Pretreatment on Biogas Production Through Anaerobic Digestion of Food Waste. International Journal of Hydrogen Energy, 42(42), 26522-26528.
  • Desa, U., 2013. Population Division 2013. World Population Prospects: The 2012 Revision, Highlights and Advance Tables. Working Paper No. ESA/P/WP.228.
  • Di Fraia, S., Massarottia, N., Vanoli, L., 2018. A Novel Energy Assessment of Urban Wastewater Treatment Plants. Energy Conversion and Management, 163, 304–313.
  • Doğan, I., 2008. Combination of Alkaline Solubilization with Microwave Digestion as a Sludge Disintegration Method: Effect on Gas Production and Quantity and Dewaterability of Anaerobically Digested Sludge. Master's Thesis, Middle East Technical Unıversity,Turkey, 186p.
  • Doğan, I.,Sanin, F. D., 2009. Alkaline Solubilization and Microwave Irradiation as a Combined Sludge Disintegration and Minimization Method. Water Research, 43(8), 2139-2148.
  • Duan, N., Dong, B., Wu, B., Dai, X., 2012. High-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions: Feasibility Study. Bioresource Technology, 104, 150-156.
  • Ebenezer, A. V., Arulazhagan, P., Kumar, S. A., Yeom, I., Banu, J. R., 2015. Effect of Deflocculation on the Efficiency of Low-Energy Microwave Pretreatment and Anaerobic Biodegradation of Waste Activated Sludge. Applied Energy, 145, 104–110.
  • Elagroudy, S.,El-Gohary, F., 2013. Microwave Pretreatment of Mixed Sludge for Anaerobic Digestion Enhancement. International Journal of Thermal and Environmental Engineering, 5, 105-111.
  • Eskicioglu, C., Droste, R. L., Kennedy, K. J., 2006a. Performance of Continuous Flow Anaerobic Sludge Digesters After Microwave Pretreatment. Proceedings of the Water Environment Federation, (13), 526-540.
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2007a. Enhancement of Batch Waste Activated Sludge Digestion by Microwave Pretreatment. Water Environment Research, 79(11), 2304-2317
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2008a. Initial Examination of Microwave Pretreatment on Primary, Secondary and Mixed Sludges Before and After Anaerobic Digestion. Water Science and Technology, 57(3), 311-317.
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2009. Enhanced Disinfection and Methane Production from Sewage Sludge by Microwave Irradiation. Desalination, 248(1-3), 279-285.
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2006b. Characterization of Soluble Organic Matter of Waste Activated Sludge Before and After Thermal Pretreatment. Water Research, 40(20), 3725-3736.
  • Eskicioglu, C., Prorot, A., Marin, J., Droste, R. L., Kennedy, K. J., 2008b. Synergetic Pretreatment of Sewage Sludge by Microwave Irradiation in Presence of H2O2 for Enhanced Anaerobic Digestion. Water Research, 42(18), 4674–4682.
  • Eskicioglu, C., Terzian, N., Kennedy, K. J., Droste, R. L., Hamoda, M., 2007b. Athermal Microwave Effects for Enhancing Digestibility of Waste Activated Sludge. Water Research, 41(11), 2457–2466.
  • Eswari, P., Kavitha, S., Kaliappan, S., Yeom, I. T.,Banu, J. R., 2016. Enhancement of Sludge Anaerobic Biodegradability by Combined Microwave- H2O2 Pretreatment in Acidic Conditions. Environmental Science and Pollution Research, 23(13), 13467-13479.
  • Franke-Whittle, I. H., Walter, A., Ebner, C., Insam, H., 2014. Investigation into the Effect of High Concentrations of Volatile Fatty Acids in Anaerobic Digestion on Methanogenic Communities. Waste Management, 34(11), 2080-2089.
  • Fytili, D., Zabaniotou, A., 2008. Utilization of Sewage Sludge in EU Application of Old and New Methods—A Review. Renewable and Sustainable Energy Reviews, 12(1), 116-140.
  • Gabbita, K. V., Hzuang, J. Y., 1984 . Catalase Activity of Activated Sludge. Toxicological & Environmental Chemistry, 8(2-3), 133-150.
  • Golmakani, M. T. Rezaei, K., 2008. Comparison of Microwave assisted Hydro distillation with the Traditional Hydrodistillation Method in the Extraction of Essential Oils from Thymus Vulgaris L. Food Chemistry, 109, 925–930 .
  • Guwy, A.J., Buckland, H., Hawkes, F.R., Hawkes, D.L., 1998. Active Biomass in Activated Sludge: Comparison of Respirometry with Catalase Activity Measured Using An On-Line Monitor. Water Research, 32(12), 3705-3709.
  • Guwy, A.J., Martin, S.R., Hawkes, F.R., Hawkes, D.L.,1999. Catalase Activity Measurements in Suspended Aerobic Biomass and Soil Samples. Enzyme Microb. Technol., 25(8), 669-676.
  • Hasegawa, S., Shiota, N., Katsura, K., Akashi, A., 2000. Solubilization of Organic Sludge by Thermophilic Aerobic Bacteria as a Pretreatment for Anaerobic Digestion. Water Science and Technology, 41(3), 163-169.
  • Hephzibah, D., Kumaran, P., Saifuddin, N. M., 2015. Comparison of the Effects of Continuous Flow Microwave Pre-Treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant. International Journal of Bioengineering and Life Sciences, 9(12), 1210-1214.
  • Hong, S. M., Park, J. K., Lee, Y. O., 2004. Mechanisms of Microwave Irradiation Involved in the Destruction of Fecal Coliforms from Biosolids. Water Research, 38(6), 1615-1625.
  • Hong, S. M., Park, J. K., Teeradej, N., Lee, Y. O., Cho, Y. K., Park, C. H., 2006. Pretreatment of Sludge with Microwaves for Pathogen Destruction and Improved Anaerobic Digestion Performance. Water Environment Research, 78(1), 76-83.
  • Hong, S.M., 2002. Enhancement of Pathogen Destruction and Anaerobic Digestibility Using Microwaves. Ph.D. Thesis, University of Wisconsin–Madison, USA.
  • Houtmeyers, S., Degrève, J., Willems, K., Dewil, R., Appels, L., 2014. Comparing the Influence of Low Power Ultrasonic and Microwave Pre-Treatments on the Solubilisation and Semi-Continuous Anaerobic Digestion of Waste Activated Sludge. Bioresource Technology, 171, 44-49.
  • Hsieh, C. H., Lo, S. L., Chiueh, P. T., Kuan, W. H., Chen, C. L., 2007. Microwave Enhanced Stabilization of Heavy Metal Sludge. Journal of Hazardous Materials, 139(1), 160-166.
  • Iacovidou, E., Ohandja, D. G., Voulvoulis, N., 2012. Food Waste Co-Digestion with Sewage Sludge–Realising its Potential in the UK. Journal of Environmental Management, 112, 267-274.
  • Jacob, J., Chia, L. H. L., Boey, F. Y. C.,1995. Thermal and Non-Thermal Interaction of Microwave Radiation with Materials. Journal of Materials Science, 30(21), 5321-5327.
  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., Baig, J. A., 2009. Speciation of Heavy Metals in Untreated Sewage Sludge by Using Microwave Assisted Sequential Extraction Procedure. Journal of Hazardous Materials, 163(2-3), 1157-1164.
  • Jang, J. H., Ahn, J. H., 2015 . High-Temperature Microwave NaOH Pretreatment of Waste-Activated Sludge for Anaerobic Digestion. Journal of Environmental Engineering, 141(8), 06015002.
  • Jhansi, S.C. And Mishra, S.K., 2013. Wastewater Treatment and Reuse: Sustainability Options. Journal of Sustainable Development, 10, 1, 1 – 15.
  • Jiang, H., Liu, T., Ding, J., Nie, H., Zhou, H., 2018. Optimization and Performance of Moderate Combined Alkali and Microwave Pretreatment for Anaerobic Digestion of Waste-Activated Sludge. Polish Journal of Environmental Studies, 27(2), 689-697.
  • Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., Miles, N. J., 2002. Microwave Heating Applications in Environmental Engineering—A Review. Resources, Conservation and Recycling, 34(2), 75-90.
  • Jou, C. J., 2008. Degradation of Pentachlorophenol with Zero-Valence Iron Coupled with Microwave Energy. Journal of Hazardous Materials, 152(2), 699-702.
  • Kainthola, J., Shariq, M., Kalamdhad, A. S., Goud, V. V., 2019 . Enhanced Methane Potential of Rice Straw with Microwave Assisted Pretreatment and its Kinetic Analysis. Journal of Environmental Management, 232, 188-196.
  • Kenge, A. A., Liao, P. H., Lo, K. V., 2009. Treating Solid Dairy Manure Using Microwave-Enhanced Advanced Oxidation Process. Journal of Environmental Science and Health, Part B, 44(6), 606-612.
  • Kennedy, K., J., Thibault, G., & Droste, R. L., 2007. Microwave Enhanced Digestion of Aerobic SBR Sludge. Water SA, 33, 2, 261-270.
  • Kepp, U., Machenbach, I., Weisz, N., Solheim, O. E., 2000. Enhanced Stabilisation of Sewage Sludge Through Thermal Hydrolysis-Three Years of Experience with Full Scale Plant. Water Science and Technology, 42(9), 89-96.
  • Kim, D. H., Cho, S. K., Lee, M. K., & Kim, M. S., 2013. Increased Solubilization of Excess Sludge Does Not Always Result in Enhanced Anaerobic Digestion Efficiency. Bioresource Technology, 143, 660-664.
  • Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., Lee, J., 2003. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. Journal of Bioscience and Bioengineering, 95(3), 271-275.
  • Kor-Bicakci, G., Abbott, T., Ubay-Cokgor, E., Eskicioglu, C., 2017. Effect of Microwave Pretreatment on Removal of Triclosan During Anaerobic Digestion of Wastewater Treatment Sludge. Proceedings of the Water Environment Federation, (9), 3062-3082.
  • Kor-Bicakci, G., Ubay-Cokgor, E.,Eskicioglu, C., 2019. Effect of Dewatered Sludge Microwave Pretreatment Temperature and Duration on Net Energy Generation and Biosolids Quality From Anaerobic Digestion. Energy, 168, 782-795.
  • Koster, I. W., Lettinga, G., 1984 . The Influence of Ammonium-Nitrogen on the Specific Activity of Pelletized Methanogenic Sludge. Agricultural Wastes, 9(3), 205-216.
  • Koupaie, E. H., & Eskicioglu, C., 2016. Conventional Heating vs. Microwave Sludge Pretreatment Comparison Under Identical Heating/Cooling Profiles for Thermophilic Advanced Anaerobic Digestion. Waste Management, 53, 182-195.
  • Koupaie, E. H., Eskicioglu, C., 2015. Below and Above Boiling Point Comparison of Microwave Irradiation and Conductive Heating for Municipal Sludge Digestion Under Identical Heating/Cooling Profiles. Bioresource Technology, 187, 235–245.
  • Kuan ,W., Chen C,L., Lo ,S,L., 2008. Application of MW Energy on the Stabilization of Copper-Contained Industry Sludge. Research Journal of Chemical and Environment, 12(3):77–81.
  • Kuglarz, M., Karakashe, D., Angelidaki, I., 2013. Microwave and Thermal Pretreatment as Methods for Increasing the Biogas Potential of Secondary Sludge from Municipal Wastewater Treatment Plants. Bioresource Technology, 134, 290-297.
  • Iacovidou, E., Ohandja, D. G., Voulvoulis, N., 2012. Food Waste Co-Digestion With Sewage Sludge–Realising its Potential in the UK. Journal of Environmental Management, 112, 267-274.
  • Labuza, T. P., 1992. The Kinetics of Nonenzymatic Browning. Physical Chemistry of Foods.
  • Lee, D. J., Lee, S. Y., Bae, J. S., Kang, J. G., Kim, K. H., Rhee, S. S., Seo, D. C., 2015. Effect of Volatile Fatty Acid Concentration on Anaerobic Degradation Rate from Field Anaerobic Digestion Facilities Treating Food Waste Leachate in South Korea. Journal of Chemistry, https://doi.org/10.1155/2015/640717.
  • Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L., 2004. Persulfate Oxidation for in Situ Remediation of TCE. I. Activated by Ferrous Ion with and Without A Persulfate–Thiosulfate Redox Couple. Chemosphere, 55(9), 1213-1223.
  • Liao, P. H., Lo, K. V., Chan, W. I., Wong, W. T., 2007. Sludge Reduction and Volatile Fatty Acid Recovery Using Microwave Advanced Oxidation Process. Journal of Environmental Science and Health Part A, 42(5), 633-639.
  • Liao, P. H., Mavinic, D. S., Koch, F. A., 2003. Release of Phosphorus from BNR Sludges: A Study of Sludge Pre-Treatment Methods to Optimize Phosphorus Release for Subsequent Recovery Purpose. Journal of Environmental Engineering and Science, 2, 369-81.
  • Liao, P. H., Wong, W. T., Lo, K. V., 2005a. Release of Phosphorus from Sewage Sludge Using Microwave Technology. Journal of Environmental Engineering and Science, 4(1), 77-81.
  • Liao, P. H., Wong, W. T., Lo, K. V., 2005b. Advanced Oxidation Process using Hydrogen Peroxide/Microwave System for Solubilization of Phosphate. Journal of Environmental Science and Health, 40(9), 1753-1761.
  • Liu, J., Yu, D., Zhang, J., Yang, M., Wang, Y., Wei, Y., Tong, J., 2016. Rheological Properties of Sewage Sludge During Enhanced Anaerobic Digestion with Microwave-H2O2 Pretreatment. Water Research, 98, 98-108.
  • Lo, K. V., Srinivasan, A., Liao, P. H., Bailey, S., 2015. Microwave Oxidation Treatment of Sewage Sludge. Journal of Environmental Science and Health, Part A, 50(8), 882-889.
  • Lo, K. V., Tan, H., Tunile, I., Burton, T., Kang, T., Srinivasan, A., Liao, P. H., 2018. Microwave Enhanced Advanced Oxidation Treatment of Municipal Wastewater Sludge. Chemical Engineering and Processing-Process Intensification, 128, 143-148.
  • Lu, J., 2019. Carbon Footprint and Reduction Potential of Chinese Wastewater Treatment Sector. Master Thesis. University of Science And Technology of China, China (in Chinese).
  • Machnicka, A., Nowicka, E., Grübel, K., 2017. Disintegration as a Key-Step in Pre-Treatment of Surplus Activated Sludge. Journal of Water Chemistry and Technology, 39(1), 47-55.
  • Madigan, M. T., J. M. M., Paul.V.D., David.P.C., 2005. Brock Biology of Microorganisms , 11th Edn. (International Edition).
  • Mata-Alvarez, J., Macé, S., Llabres, P., 2000. Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresource Technology, 74(1), 3-16.
  • Mawioo, P. M., Rweyemamu, A., Garcia, H. A., Hooijmans, C. M., Brdjanovic, D., 2016. Evaluation of a Microwave Based Reactor for the Treatment of Blackwater Sludge. Science of The Total Environment, 548–549, 72–81.
  • Mehdizadeh, S. N., Eskicioglu, C., Bobowski, J., Johnson, T., 2013. Conductive Heating and Microwave Hydrolysis under Identical Heating Profiles for Advanced Anaerobic Digestion for Municipal Sludge. Water Research, 47(14), 5040-5051.
  • Miguel, N., Coelho, G., Droste, R. L., Kennedy, K. J., 2011. Evaluation of Continuous Mesophilic, Thermophilic and Temperature Phased Anaerobic Digestion of Microwaved Activated Sludge. Water Research, 45(9), 2822–2834.
  • Milieu, Wrc, RPA., 2010. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final Report, Part III: Project Interim Reports . DG ENV.G.4/ETU/2008/0076r.
  • Mottet, A., Steyera, J.P., Del Erisb, S., Vedrenneb, F., Chauzyc, J., Carr Ere, H., 2009. Kinetics of Thermophilic Batch Anaerobic Digestion of Thermal Hydrolysed Waste Activated Sludge. Biochemical Engineering Journal, 46, 169-175.
  • Müller, J. A., 2001. Prospects and Problems of Sludge Pre-Treatment Processes. Water Science and Technology, 44(10), 121-128.
  • Müller, J., Lehne, G., Schwedes, J., Battenberg, S., Näveke, R., Kopp, J.,Hempel, D. C., 1998. Disintegration of Sewage Sludges and Influence and Anaerobic Digestion. Water Science and Technology, 38(8-9), 425-433.
  • Nascimento, A. L., Souza, A. J., Andrade, P. A. M., Andreote, F. D., Coscione, A. R., Oliveira, F. C., Regitano, J. B., 2018. Sewage Sludge Microbial Structures and Relations to Their Sources, Treatments, and Chemical Attributes. Frontiers in Microbiology, 3,9, 1462.
  • Neis, U., 2000. Ultrasound in Water, Wastewater and Sludge Treatment. Water 21, 36–39 .
  • Özön, E., Erdinçler, A., 2019. Effects of Microwave, H2O2/MW and H2O2/Heat Pre-Treatments on the Methane Production from Wastewater Sludges: Experimental and Modeling Approach. Environmental Science and Pollution Research, 26(35), 35411-35421.
  • Park, B., Ahn, J. H., Kim, J., Hwang, S., 2004. Use of Microwave Pretreatment for Enhanced Anaerobiosis of Secondary Sludge. Water Science and Technology, 50(9), 17-23.
  • Park, W. J., Ahn, J. H., Lee, C. K., 2009. Effect of Temperature-Increase Rate and Terminal Temperature on the Solubilization of Sewage Sludge Using Microwave Irradiation. Environmental Engineering Research, 14(1), 48-52.
  • Park, W., Ahn, J., Hwang, S., Lee, C., 2010. Effect of Output Power, Target Temperature, and Solid Concentration on the Solubilization of Waste Activated Sludge Using Microwave Irradiation. Bioresource Technology, 101(1), S13–S16.
  • Parkin, G. F., Owen, W. F., 1986. Fundamentals of Anaerobic Digestion of Wastewater Sludges. Journal of Environmental Engineering, 112(5), 867-920.
  • Passos, F., Solé, M., García, J., Ferrer, I., 2013. Biogas Production from Microalgae Grown in Wastewater: Effect of Microwave Pretreatment. Applied Energy, 108, 168–175.
  • Penaud, V., Delgenès, J. P., Moletta, R., 1999. Thermo-Chemical Pretreatment of a Microbial Biomass: Influence of Sodium Hydroxide Addition on Solubilization and Anaerobic Biodegradability. Enzyme and Microbial Technology, 25(3-5), 258-263.
  • Pinnekamp, J., 1988. Effects of Thermal Pretreatment of Sewage Sludge on Anaerobic Digestion. Water Science and Technology,18-21 July, 97-108.
  • Pino‐Jelcic, S. A., Hong, S. M., Park, J. K., 2006. Enhanced Anaerobic Biodegradability and Inactivation of Fecal Coliforms and Salmonella Spp. in Wastewater Sludge by using Microwaves. Water Environment Research, 78(2), 209-216.
  • Plazl, I., Leskovšek, S.,Koloini, T., 1995. Hydrolysis of Sucrose by Conventional and Microwave Heating in Stirred Tank Reactor. The Chemical Engineering Journal and the Biochemical Engineering Journal, 59(3), 253-257.
  • Qiao, W., Wang, W., Xun, R., Lu, W., Yin, K., 2008. Sewage Sludge Hydrothermal Treatment by Microwave İrradiation Combined with Alkali Addition. Journal of Materials Science, 43(7), 2431-2436.
  • Qiao, W., Wang, W., Zhu, C., Zhang, Z., 2010. Biogas Recovery from Microwave Heated Sludge by Anaerobic Digestion. Science in China Series E: Technological Sciences, 53(1), 144-149.
  • Rani, R. U., Kumar, S. A., Kaliappan, S., Yeom, I., Banu, J. R., 2013. Impacts of Microwave Pretreatments on the Semi-Continuous Anaerobic Digestion of Dairy Waste Activated Sludge. Waste Management, 33(5), 1119–1127.
  • Ray, B. T., Lin, J. G., Rajan, R. V., 1990. Low-Level Alkaline Solubilization for Enhanced Anaerobic Digestion. Research Journal of The Water Pollution Control Federation, 81-87.
  • Remya, N., Lin, J. G., 2011. Current Status of Microwave Application in Wastewater Treatment—A Review. Chemical Engineering Journal, 166(3), 797-813.
  • Saha, M., Eskicioglu, C., Marin, J., 2011. Microwave, Ultrasonic and Chemo-Mechanical Pretreatments for Enhancing Methane Potential of Pulp Mill Wastewater Treatment Sludge. Bioresource Technology, 102(17), 7815-7826.
  • Saifuddin, N., Fazlili, S. A., 2009. Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt. American Journal of Engineering and Applied Sciences, 2(1).
  • Savoo, S., Mudhoo, A., 2018. Biomethanation Macrodynamics of Vegetable Residues Pretreated by Low-Frequency Microwave Irradiation. Bioresource Technology, 248, 280-286.
  • Serrano, A., Siles, J. A., Martín, M. A., Chica, A. F., Estévez-Pastor, F. S., Toro-Baptista, E., 2016. Improvement of Anaerobic Digestion of Sewage Sludge Through Microwave Pre-Treatment. Journal of Environmental Management, 177, 231-239.
  • Siddique, M. N. I., Munaim, M. S. A., Wahid, Z. B. A., 2017. The Combined Effect of Ultrasonic and Microwave Pre-Treatment on Bio-Methane Generation from Co-Digestion of Petrochemical Wastewater. Journal of Cleaner Production, 145, 303-309.
  • Sólyom, K., Mato, R. B., Pérez-Elvira, S. I., Cocero, M. J., 2011. The Influence of the Energy Absorbed from Microwave Pretreatment on Biogas Production from Secondary Wastewater Sludge. Bioresource Technology, 102(23), 10849-10854.
  • Spinosa, L., Vesilind, P. A., 2001. Sludge into Biosolids. Handbook of Processing, Disposal, Utilization. Pp 394. IWA Publishing, London.
  • Tanaka, S., Kobayashi, T., Kamiyama, K., N, M. L., Bildan, S., 1997. Effects of Thermochemical Pretreatment on the Anaerobic Digestion of Waste Activated Sludge. Water Science and Technology, 35(8), 209–215.
  • Thomas, L., Jun Thomas, L., Jungschaffer, G., Sprössler, B., 1993. Improved Sludge Dewatering by Enzymatic Treatment. Water Science and Technology, 28(1), 189-192.
  • Tiehm, A., Nickel, K., Zellhorn, M., Neis, U., 2001. Ultrasonic Waste Activated Sludge Disintegration for Improving Anaerobic Stabilization. Water Research, 35(8), 2003-2009.
  • Toreci, I., Droste, R. L., Kennedy, K. J., 2011. Mesophilic Anaerobic Digestion with High‐Temperature Microwave Pretreatment and Importance of Inoculum Acclimation. Water Environment Research, 83(6), 549-559.
  • Toreci, I., Kennedy, K. J., Droste, R. L., 2009. Evaluation of Continuous Mesophilic Anaerobic Sludge Digestion After High Temperature Microwave Pretreatment. Water Research, 43(5), 1273–1284.
  • Toreci, I., Kennedy, K. J.,Droste, R. L., 2010. Effect of High-Temperature Microwave Irradiation on Municipal Thickened Waste Activated Sludge Solubilization. Heat Transfer Engineering, 31(9), 766-773.
  • TÜİK2018.Tuik.Gov.Tr/Prehaberbultenleri.Do?İd=30667#:~:Text=At%C4%B1ksu%20ar%C4%B1tma%20tesisl.Eri%20ile%20hizmet,X%2C7%20olarak%20hesapland%C4%B1.&Text=Belediyeler%20taraf%C4%B1ndan%20kanalizasyon%20%C5%9Febekesi%20ile,Miktar%C4%B1%20188%20litre%20olarak%20hesapland%C4%B1.
  • TÜİK2021. Https://Data.Tuik.Gov.Tr/Bulten/Index?P=Adrese-Dayal%C4%B1-N%C3%Bcfus-Kay%C4%B1t-Sistemi-Sonu%C3%A7lar%C4%B1-2020-37210&Dil=1.
  • Tyagi, V. K., Lo, S. L., 2013. Microwave Irradiation: A Sustainable Way for Sludge Treatment and Resource Recovery. Renewable and Sustainable Energy Reviews, 18, 288-305.
  • Tyagi, V. K., Lo, S. L., Appels, L., Dewil, R., 2014b. Ultrasonic Treatment of Waste Sludge: A Review on Mechanisms and Applications. Critical Reviews in Environmental Science and Technology, 44(11), 1220-1288.
  • Tyagi, V. K., Lo, S. L., Rajpal, A., 2014a. Chemically Coupled Microwave and Ultrasonic Pre-Hydrolysis of Pulp and Paper Mill Waste-Activated Sludge: Effect on Sludge Solubilisation and Anaerobic Digestion. Environmental Science and Pollution Research, 21(9), 6205-6217.
  • Valo, A., Carrère, H., Delgenès, J. P., 2004. Thermal, Chemical and Thermo‐Chemical Pre‐Treatment of Waste Activated Sludge for Anaerobic Digestion. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79(11), 1197-1203.
  • Verlicchi, P., Zambello, E.,2015. Pharmaceuticals and Personal Care Products in Untreated and Treated Sewage Sludge: Occurrence and Environmental Risk in The Case of Application on Soil—A Critical Review. Science of the Total Environment, 538, 750-767.
  • Wainaina, S., Awasthi, M. K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Taherzadeh, M. J., 2020. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresource Technology, 301, 122778.
  • Wang, C., Shao, Z., Qiu, L., Hao, W., Qu, Q., Sun, G., 2021. The Solid-State Physicochemical Properties and Biogas Production of the Anaerobic Digestion of Corn Straw Pretreated by Microwave Irradiation. RSC Advances, 11(6), 3575-3584.
  • Wang, Y., Gui, C., Ni, X., Chen, M., Wei, Y., 2015 . Multivariate Analysis of Sludge Disintegration by Microwave-Hydrogen Peroxide Pretreatment Process. Journal of Hazardous Materials, 283, 856-864.
  • Wang, Y., Wei, Y., Liu, J., 2009. Effect of H2O2 Dosing Strategy on Sludge Pretreatment by Microwave- H2O2 Advanced Oxidation Process. Journal of Hazardous Materials, 169(1-3), 680-684.
  • Wang, Z., Wang, W., Zhang, X., 2006. Integrated Process of Thermal Hydrolysis and Anaerobic Sequencing Batch Reactor for the Treatment of Sewage Sludge. Acta Scientiarum Naturalium-Universitatis Pekinensis, 42(6), 746.
  • Weemaes, M. P., Verstraete, W. H., 1998. Evaluation of Current Wet Sludge Disintegration Techniques. Journal of Chemical Technology & Biotechnology 73(2), 83-92.
  • Westerholm, M., Crauwels, S., Geel, M. Van, Dewil, R., Lievens, B., Appels, L., 2016. Microwave and Ultrasound Pre-Treatments Influence Microbial Community Structure and Digester Performance in Anaerobic Digestion of Waste Activated Sludge. Applied Microbiology and Biotechnology, 5339–5352.
  • Wojciechowska, E., 2005. Application of Microwaves for Sewage Sludge Conditioning. Water Research, 39(19), 4749-4754.
  • Wong, W. T., Chan, W. I., Liao, P. H., Lo, K. V., Mavinic, D. S., 2006. Exploring the Role of Hydrogen Peroxide in the Microwave Advanced Oxidation Process: Solubilization of Ammonia and Phosphates. Journal of Environmental Engineering and Science, 5(6), 459-465.
  • Wong, W. T., Lo, K. V., Liao, P. H.,2007. Factors Affecting Nutrient Solubilization from Sewage Sludge Using Microwave-Enhanced Advanced Oxidation Process. Journal of Environmental Science and Health, Part A, 42(6), 825-829.
  • Woo, I. S., Rhee, I. K., Park, H. D., 2000. Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure. Applied and Environmental Microbiology, 66(5), 2243-2247.
  • Xia, D. K., Picklesi, C. A., 2000. Microwave Caustic Leaching of Electric Arc Furnace Dust. Minerals Engineering, 13(1), 79-94.
  • Xu, C. C., Lancaster, J., 2009. Treatment of Secondary Sludge for Energy Recovery. Energy Recover. Nov. Sci. Publ. Inc., New.
  • Yan, Y., Chen, H., Xu, W., He, Q., Zhou, Q., 2013. Enhancement of Biochemical Methane Potential from Excess Sludge with Low Organic Content by Mild Thermal Pretreatment. Biochemical Engineering Journal, 70, 127-134.
  • Yang, Q., Yi, J., Luo, K., Jing, X., Li, X., Liu, Y., Zeng, G., 2013. Improving Disintegration and Acidification of Waste Activated Sludge by Combined Alkaline and Microwave Pretreatment. Process Safety and Environmental Protection, 91(6), 521-526.
  • Yawson, S. K., Liao, P. H., Lo, K. V., 2011. Two-Stage Dilute Acid Hydrolysis of Dairy Manure for Nutrient Release, Solids Reduction and Reducing Sugar Production. Natural Resources, 2(04), 224.
  • Yeneneh, A. M., Chong, S., Sen, T. K., Ang, H. M., Kayaalp, A., 2013a. Effect of Ultrasonic, Microwave and Combined Microwave–Ultrasonic Pretreatment of Municipal Sludge on Anaerobic Digester Performance. Water, Air, & Soil Pollution, 224(5), 1-9.
  • Yeneneh, A. M., Kayaalp, A., Sen, T. K., Ang, H. M., 2015. Effect of Microwave and Combined Microwave-Ultrasonic Pretreatment on Anaerobic Digestion of Mixed Real Sludge. Journal of Environmental Chemical Engineering, 3(4), 2514-2521.
  • Yeneneh, A., Sen, T., Chong, S., Ang, H. M., Kayaalp, A., 2013b. Effect of Combined Microwave-Ultrasonic Pretreatment on Anaerobic Biodegradability of Primary, Excess Activated and Mixed Sludge. Computational Water, Energy, and Environmental Engineering, 2, 7-11.
  • Yi, W. G., Lo, K. V., Mavinic, D. S., 2014. Effects of Microwave, Ultrasonic and Enzymatic Treatment on Chemical and Physical Properties of Waste-Activated Sludge. Journal of Environmental Science and Health, Part A, 49(2), 203-209.
  • Yin, G., Liao, P. H., Lo, K. V., 2007. An Ozone/Hydrogen Peroxide/Microwave-Enhanced Advanced Oxidation Process for Sewage Sludge Treatment. Journal of Environmental Science and Health, Part A, 42(8), 1177-1181.
  • Yu, T., Deng, Y., Liu, H., Yang, C., Wu, B., Zeng, G., Nishimura, F., 2017. Effect of Alkaline Microwaving Pretreatment on Anaerobic Digestion and Biogas Production of Swine Manure. Scientific Reports, 7(1), 1-8.
  • Zaidi, A. A., Feng, R., Malik, A., Khan, S. Z., Shi, Y., Bhutta, A. J., Shah, A. H., 2019. Combining Microwave Pretreatment with Iron Oxide Nanoparticles Enhanced Biogas and Hydrogen Yield from Green Algae. Processes, 7(1), 24.
  • Zhang, L., Guo, X., Yan, F., Su, M., Li, Y., 2007. Study of The Degradation Behaviour of Dimethoate Under Microwave Irradiation. Journal of Hazardous Materials, 149(3), 675-679.
  • Zhang, Q. H., Yang, W. N., Ngo, H. H., Guo, W. S., Jin, P. K., Dzakpasu, M., Yang, S. J., Wang, Q., Wang, X. C., Ao, D., 2016. Current Status of Urban Wastewater Treatment Plants in China. 93, 11–22.
  • Zhen, Z., Xu, Y., Bin, L., 2011. Effect and Mechanism of Microwave Irradiation and Alkaline Solubilization as a Combined Method on Sludge. International Conference on Remote Sensing, Environment and Transportation Engineering (pp. 1135-1138) IEEE .
  • Zheng, J., Kennedy, K. J., Eskicioglu, C., 2009. Effect of Low Temperature Microwave Pretreatment on Characteristics and Mesophilic Digestion of Primary Sludge. Environmental Technology, 30(4), 319-327.
  • Zhou, B. W., Shin, S. G., Hwang, K., Ahn, J. H., Hwang, S., 2010. Effect of Microwave Irradiation on Cellular Disintegration of Gram Positive and Negative Cells. Applied Microbiology and Biotechnology, 87(2), 765-770.

ANAEROBİK ÇÜRÜTME ÖNCESİ ATIK BİYOLOJİK ÇAMURLARIN MİKRODALGA RADYASYONU İLE DEZENTEGRASYONU

Year 2022, , 740 - 760, 30.06.2022
https://doi.org/10.21923/jesd.931036

Abstract

Kentsel yerleşim alanlarındaki nüfus artışı, belediye atıksu arıtma tesislerinde (AAT) biyolojik çamur üretiminde artışa neden olmaktadır. Yüksek bertaraf maliyeti ve yasal kısıtlama, AAT’nde biyolojik çamur yönetimi konusunda karşılaşılan en önemli sorunlardır. Son yıllarda, AAT'nde atık çamur üretimini azaltmak ve anaerobik çürütme ünitesinde üretilen biyogaz hacmini artırmak için daha çevreci ve ekonomik yöntemler geliştirmek amacı ile deneysel çalışmalar yapılmaktadır. Anaerobik çürütme reaktöründe biyolojik bozunma için gereken uzun hidrolik alıkonma süresi, atık biyolojik çamurun (ABÇ) dezentegrasyonu ile azaltılabilir. Biyolojik çamurun parçalanması, çözeltiye organik ve inorganik maddelerin salınmasını sağlar. Anaerobik reaktör girişindeki organik madde derişiminin artması, çürütme verimini artırır. Dezentegrasyon, biyolojik çamurun yavaş ve kısmen parçalanabilir kısmının anaerobik çürütme sürecinde, biyokütle tarafından daha kolay kullanılabilen bileşiklere dönüştürülmesini sağlar. Anaerobik çamur çürütme (AÇÇ) sürecinde, biyogaz üretim verimliliğini artırmak için termal, kimyasal, mekanik ve ileri oksidasyon işlemleri gibi biyolojik çamur dezentegrasyon yöntemleri veya bunların kombinasyonları uygulanmaktadır. Bu derleme çalışmasının temel amacı, anaerobik çamur çürütmede biyogaz üretimi dikkate alınarak biyolojik çamur dezentegrasyonunda mikrodalga radyasyon (MD) mekanizmasını tanıtmaktır. Çeşitli çalışma koşulları altında, MD ile dezentegrasyon yönteminin etkinliği, ısıtma prensipleri, çamur ayrışması, biyogaz üretimi açısından değerlendirilmiştir. Ayrıca MD/H2O2, MD/UV vd. MD ile birleşik sistem verimliliği, tekil MD radyasyon süreci ile karşılaştırılmıştır.

References

  • Acquisto, B. A., Reimers, R. S., Smith, J. E., Pillai, S. D., 2006. Factors Affecting Disinfection and Stabilization of Sewage Sludge. Proceedings of the Water Environment Federation, (7), 5345-5361.
  • Ahn, J. H., Shin, S. G., Hwang, S., 2009. Effect Of Microwave Irradiation on the Disintegration and Acidogenesis of Municipal Secondary Sludge. Chemical Engineering Journal, 153(1–3), 145–150.
  • Ahn, J. H., Shin, S. G., Park, B. C., Hwang, S., 2011. Comparison of Municipal and Coke Wastewater Sludges in Disintegration and Acidogenesis by Microwave. Journal of Environmental Engineering, 137(8), 740-745.
  • Akgul, D., Cella, M. Eskicioglu, C., 2017. Influences of Low-Energy Input Microwave and Ultrasonic Pretreatments on Single-Stage and Temperature-Phased Anaerobic Digestion (TPAD) of Municipal Wastewater Sludge. Energy, 123(None), 271-282.
  • Alhraishawi, A. A., Alani, W. K., Chaichan, M. T., Jawad, R. S., 2020. Performance of Oil on Bio-Methane Creation Under Anaerobic Co-Fermentation Condition. Review. In IOP Conference Series: Materials Science and Engineering , 881, No. 1, P. 012189.
  • Alqaralleh, R. M., Kennedy, K., Delatolla, R., 2019. Microwave vs. Alkaline-Microwave Pretreatment for Enhancing Thickened Waste Activated Sludge and Fat, Oil, and Grease Solubilization, Degradation and Biogas Production. Journal of Environmental Management, 233, 378-392.
  • Andreottola, G., Foladori, P., 2006. A Review and Assessment of Emerging Technologies for the Minimization of Excess Sludge Production in Wastewater Treatment Plants. Journal of Environmental Science and Health Part A, 41(9), 1853-1872.
  • Appels, L., Baeyens, J., Degrève, J., Dewil, R., 2008. Principles and Potential of the Anaerobic Digestion of Waste-Activated Sludge. Progress in Energy and Combustion Science, 34(6), 755-781.
  • Appels, L., Houtmeyers, S., Degrève, J., Van Impe, J., Dewil, R., 2013. Influence of Microwave Pre-Treatment on Sludge Solubilization and Pilot Scale Semi-Continuous Anaerobic Digestion. Bioresource Technology, 128, 598-603.
  • Baier, U., Schmidheiny, P., 1997. Enhanced Anaerobic Degradation of Mechanically Disintegrated Sludge. Water Science and Technology, 36(11), 137-143.
  • Banik, S. B. A. S. G. S., Bandyopadhyay, S., Ganguly, S., 2003. Bioeffects of Microwave–A Brief Review. Bioresource Technology, 87(2), 155-159.
  • Barber, W. P. F., 2012. Comparison of Thermal Destruction Technology for Complete Biosolids Processing, Https://Www.Waternz.Org.Nz/Article?Action=View&Article_İd=584.
  • Barber, W. P. F., 2014. Influence of Wastewater Treatment on Sludge Production and Processing, Water and Environment Journal, 28, 1–10.
  • Barber, W. P. F., 2016. Thermal Hydrolysis for Sewage Treatment: A Critical Review. Water Research, 104, 53-71.
  • Beszédes, S., Kertész, S., László, Z., Szabo, G., Hodur, C., 2009. Biogas Production of Ozone and/or Microwave-Pretreated Canned Maize Production Sludge. Ozone: Science & Engineering, 31(3), 257-261.
  • Beszédes, S., László, Z., Horváth, Z., Szabó, G. Hodúr, C., 2011. Comparison of the Effects of Microwave Irradiation with Different İIntensities on the Biodegradability of Sludge from the Dairy- and Meat Industry. Bioresource Technology, 102(2), 814-821.
  • Bi, X., Wang, P., Jiao, C., Cao, H., 2009. Degradation of Remazol Golden Yellow Dye Wastewater in Microwave Enhanced Clo2 Catalytic Oxidation Process. Journal of Hazardous Materials, 168(2-3), 895-900.
  • Bougrier, C., Battimelli, A., Delgenes, J. P., Carrere, H., 2007. Combined Ozone Pretreatment and Anaerobic Digestion for the Reduction of Biological Sludge Production in Wastewater Treatment. Ozone: Science and Engineering, 29(3), 201-206.
  • Bozkurt, Y. C., Apul, O. G., 2019. Critical Review for Microwave Pretreatment of Waste-Activated Sludge Prior to Anaerobic Digestion. Current Opinion in Environmental Science and Health, 14, 1–9.
  • Brooks R.,1970. Heat Treatment of Sewage Sludge. Journal of Water Pollution Control Federation. 69(2), 221–31.
  • Büyükkoyuncu, D., 2012. Mikrodalganın Hacim İçerisinde Dağılımının Sıcaklık Profiline Etkisinin İncelenmesi. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi Fen Bilimleri Ensttüsü Makine Mühendisliği Anabilim Dalı, Türkiye, 157s.
  • Canales, A., Pareilleux, A., Rols, J. L., Huyard, A., 1994. Decreased Sludge Production Strategy for Domestic Wastewater Treatment. Water Science and Technology, 30(8), 97..
  • Carlsson, M., Lagerkvist, A., Morgan-Sagastume, F., 2012. The Effects of Substrate Pre-Treatment on Anaerobic Digestion Systems: A Review. Waste Management, 32(9), 1634-1650.
  • Carrère, H., Bougrier, C., Castets, D., Delgenès, J. P., 2008. Impact of Initial Biodegradability on Sludge Anaerobic Digestion Enhancement by Thermal Pretreatment. Journal of Environmental Science and Health Part A, 43(13), 1551-1555.
  • Cella, M. A., Akgul, D., Eskicioglu, C., 2016. Assessment of Microbial Viability in Municipal Sludge Following Ultrasound and Microwave Pretreatments and Resulting Impacts on the Efficiency of Anaerobic Sludge Digestion. Applied Microbiology and Biotechnology, 100(6), 2855-2868.
  • Chan, W. I., Liao, P. H., Lo, K. V., 2010. Effects of Irradiation Intensity and pH on Nutrients Release and Solids Destruction of Waste Activated Sludge Using the Microwave‐Enhanced Advanced Oxidation Process. Water Environment Research, 82(11), 2229-2238.
  • Chan, W. I., Lo, K. V., Liao, P. H., 2007a . Solubilization of Blood Meal to be Used as a Liquid Fertilizer. Journal of Environmental Science and Health Part B, 42(4), 417-422.
  • Chan, W. I., Wong, W. T., Liao, P. H., Lo, K. V., 2007b. Sewage Sludge Nutrient Solubilization Using a Single-Stage Microwave Treatment. Journal of Environmental Science and Health Part A, 42(1), 59-63.
  • Chang, C. J., Tyagi, V. K., Lo, S. L., 2011. Effects of Microwave and Alkali Induced Pretreatment on Sludge Solubilization and Subsequent Aerobic Digestion. Bioresource Technology, 102(17), 7633-7640.
  • Chen ,SL., Lo ,SL., Chiueh ,PT., Kuan, WH., Hsieh CH., 2007 . The Assistance of MW Process in Sludge Stabilization with Sodium Sulfide and Sodium Phosphate. Journal of Hazardaous Materials, 147(3), 930–937.
  • Chen, J., Li, J., Zhang, X., Wu, Z., 2020. Pretreatments for Enhancing Sewage Sludge Reduction and Reuse in Lipid Production. Biotechnology for Biofuels, 13(1), 1-10.
  • Chen, Y., Cheng, J. J., Creamer, K. S.2., 2008. Inhibition of Anaerobic Digestion Process: A Review. Bioresource Technology, 99(10), 4044-4064.
  • Christodoulou, A., Stamatelatou, K., 2016. Overview of Legislation on Sewage Sludge Management in Developed Countries Worldwide. Water Science and Technology, 73(3), 453-462.
  • Cid, B. P., Alborés, A. F., Gómez, E. F., López, E. F., 2001. Use of Microwave Single Extractions for Metal Fractionation in Sewage Sludge Samples. Analytica Chimica Acta, 431(2), 209-218.
  • Clark, D. E., Folz, D. C., West, J. K., 2000. Processing Materials with Microwave Energy. Materials Science and Engineering: A, 287(2), 153-158.
  • Coelho, N. M., Kennedy, K. J.,Droste, R. L., 2011. Effect of Microwave Athermal and Thermal Radiation in Wastewater Sludge Properties. Journal of Environmental Science and Engineering, 5(6).
  • Colón, J., Alarcón, M., Healy, M.G., Namli, A., Ponsá, S., Dilek Sanin, F., Taya, C., 2017. Chapter 14: Producing Sludge for Agricultural Applications. J. M. Lema, S. Suarez Martinez (Edt.), Handbook of Innovative Wastewater Treatment and Resource Recovery Technologies,(P. 296–322) . London, UK: IWA Publishing.
  • David, H., Palanisamy, K., Normanbhay, S., 2014 . Pre-Treatment of Sewage Sludge to Enhance Biogas Production to Generate Green Energy for Reduction of Carbon Footprint in Sewage Treatment Plant (STP). In 2014 International Conference And Utility Exhibition on Green Energy for Sustainable Development (ICUE) (Pp. 1-5). IEEE.15).
  • Deepanraj, B., Sivasubramanian, V., Jayaraj, S., 2017. Effect of Substrate Pretreatment on Biogas Production Through Anaerobic Digestion of Food Waste. International Journal of Hydrogen Energy, 42(42), 26522-26528.
  • Desa, U., 2013. Population Division 2013. World Population Prospects: The 2012 Revision, Highlights and Advance Tables. Working Paper No. ESA/P/WP.228.
  • Di Fraia, S., Massarottia, N., Vanoli, L., 2018. A Novel Energy Assessment of Urban Wastewater Treatment Plants. Energy Conversion and Management, 163, 304–313.
  • Doğan, I., 2008. Combination of Alkaline Solubilization with Microwave Digestion as a Sludge Disintegration Method: Effect on Gas Production and Quantity and Dewaterability of Anaerobically Digested Sludge. Master's Thesis, Middle East Technical Unıversity,Turkey, 186p.
  • Doğan, I.,Sanin, F. D., 2009. Alkaline Solubilization and Microwave Irradiation as a Combined Sludge Disintegration and Minimization Method. Water Research, 43(8), 2139-2148.
  • Duan, N., Dong, B., Wu, B., Dai, X., 2012. High-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions: Feasibility Study. Bioresource Technology, 104, 150-156.
  • Ebenezer, A. V., Arulazhagan, P., Kumar, S. A., Yeom, I., Banu, J. R., 2015. Effect of Deflocculation on the Efficiency of Low-Energy Microwave Pretreatment and Anaerobic Biodegradation of Waste Activated Sludge. Applied Energy, 145, 104–110.
  • Elagroudy, S.,El-Gohary, F., 2013. Microwave Pretreatment of Mixed Sludge for Anaerobic Digestion Enhancement. International Journal of Thermal and Environmental Engineering, 5, 105-111.
  • Eskicioglu, C., Droste, R. L., Kennedy, K. J., 2006a. Performance of Continuous Flow Anaerobic Sludge Digesters After Microwave Pretreatment. Proceedings of the Water Environment Federation, (13), 526-540.
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2007a. Enhancement of Batch Waste Activated Sludge Digestion by Microwave Pretreatment. Water Environment Research, 79(11), 2304-2317
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2008a. Initial Examination of Microwave Pretreatment on Primary, Secondary and Mixed Sludges Before and After Anaerobic Digestion. Water Science and Technology, 57(3), 311-317.
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2009. Enhanced Disinfection and Methane Production from Sewage Sludge by Microwave Irradiation. Desalination, 248(1-3), 279-285.
  • Eskicioglu, C., Kennedy, K. J., Droste, R. L., 2006b. Characterization of Soluble Organic Matter of Waste Activated Sludge Before and After Thermal Pretreatment. Water Research, 40(20), 3725-3736.
  • Eskicioglu, C., Prorot, A., Marin, J., Droste, R. L., Kennedy, K. J., 2008b. Synergetic Pretreatment of Sewage Sludge by Microwave Irradiation in Presence of H2O2 for Enhanced Anaerobic Digestion. Water Research, 42(18), 4674–4682.
  • Eskicioglu, C., Terzian, N., Kennedy, K. J., Droste, R. L., Hamoda, M., 2007b. Athermal Microwave Effects for Enhancing Digestibility of Waste Activated Sludge. Water Research, 41(11), 2457–2466.
  • Eswari, P., Kavitha, S., Kaliappan, S., Yeom, I. T.,Banu, J. R., 2016. Enhancement of Sludge Anaerobic Biodegradability by Combined Microwave- H2O2 Pretreatment in Acidic Conditions. Environmental Science and Pollution Research, 23(13), 13467-13479.
  • Franke-Whittle, I. H., Walter, A., Ebner, C., Insam, H., 2014. Investigation into the Effect of High Concentrations of Volatile Fatty Acids in Anaerobic Digestion on Methanogenic Communities. Waste Management, 34(11), 2080-2089.
  • Fytili, D., Zabaniotou, A., 2008. Utilization of Sewage Sludge in EU Application of Old and New Methods—A Review. Renewable and Sustainable Energy Reviews, 12(1), 116-140.
  • Gabbita, K. V., Hzuang, J. Y., 1984 . Catalase Activity of Activated Sludge. Toxicological & Environmental Chemistry, 8(2-3), 133-150.
  • Golmakani, M. T. Rezaei, K., 2008. Comparison of Microwave assisted Hydro distillation with the Traditional Hydrodistillation Method in the Extraction of Essential Oils from Thymus Vulgaris L. Food Chemistry, 109, 925–930 .
  • Guwy, A.J., Buckland, H., Hawkes, F.R., Hawkes, D.L., 1998. Active Biomass in Activated Sludge: Comparison of Respirometry with Catalase Activity Measured Using An On-Line Monitor. Water Research, 32(12), 3705-3709.
  • Guwy, A.J., Martin, S.R., Hawkes, F.R., Hawkes, D.L.,1999. Catalase Activity Measurements in Suspended Aerobic Biomass and Soil Samples. Enzyme Microb. Technol., 25(8), 669-676.
  • Hasegawa, S., Shiota, N., Katsura, K., Akashi, A., 2000. Solubilization of Organic Sludge by Thermophilic Aerobic Bacteria as a Pretreatment for Anaerobic Digestion. Water Science and Technology, 41(3), 163-169.
  • Hephzibah, D., Kumaran, P., Saifuddin, N. M., 2015. Comparison of the Effects of Continuous Flow Microwave Pre-Treatment with Different Intensities on the Anaerobic Digestion of Sewage Sludge for Sustainable Energy Recovery from Sewage Treatment Plant. International Journal of Bioengineering and Life Sciences, 9(12), 1210-1214.
  • Hong, S. M., Park, J. K., Lee, Y. O., 2004. Mechanisms of Microwave Irradiation Involved in the Destruction of Fecal Coliforms from Biosolids. Water Research, 38(6), 1615-1625.
  • Hong, S. M., Park, J. K., Teeradej, N., Lee, Y. O., Cho, Y. K., Park, C. H., 2006. Pretreatment of Sludge with Microwaves for Pathogen Destruction and Improved Anaerobic Digestion Performance. Water Environment Research, 78(1), 76-83.
  • Hong, S.M., 2002. Enhancement of Pathogen Destruction and Anaerobic Digestibility Using Microwaves. Ph.D. Thesis, University of Wisconsin–Madison, USA.
  • Houtmeyers, S., Degrève, J., Willems, K., Dewil, R., Appels, L., 2014. Comparing the Influence of Low Power Ultrasonic and Microwave Pre-Treatments on the Solubilisation and Semi-Continuous Anaerobic Digestion of Waste Activated Sludge. Bioresource Technology, 171, 44-49.
  • Hsieh, C. H., Lo, S. L., Chiueh, P. T., Kuan, W. H., Chen, C. L., 2007. Microwave Enhanced Stabilization of Heavy Metal Sludge. Journal of Hazardous Materials, 139(1), 160-166.
  • Iacovidou, E., Ohandja, D. G., Voulvoulis, N., 2012. Food Waste Co-Digestion with Sewage Sludge–Realising its Potential in the UK. Journal of Environmental Management, 112, 267-274.
  • Jacob, J., Chia, L. H. L., Boey, F. Y. C.,1995. Thermal and Non-Thermal Interaction of Microwave Radiation with Materials. Journal of Materials Science, 30(21), 5321-5327.
  • Jamali, M. K., Kazi, T. G., Arain, M. B., Afridi, H. I., Jalbani, N., Kandhro, G. A., Baig, J. A., 2009. Speciation of Heavy Metals in Untreated Sewage Sludge by Using Microwave Assisted Sequential Extraction Procedure. Journal of Hazardous Materials, 163(2-3), 1157-1164.
  • Jang, J. H., Ahn, J. H., 2015 . High-Temperature Microwave NaOH Pretreatment of Waste-Activated Sludge for Anaerobic Digestion. Journal of Environmental Engineering, 141(8), 06015002.
  • Jhansi, S.C. And Mishra, S.K., 2013. Wastewater Treatment and Reuse: Sustainability Options. Journal of Sustainable Development, 10, 1, 1 – 15.
  • Jiang, H., Liu, T., Ding, J., Nie, H., Zhou, H., 2018. Optimization and Performance of Moderate Combined Alkali and Microwave Pretreatment for Anaerobic Digestion of Waste-Activated Sludge. Polish Journal of Environmental Studies, 27(2), 689-697.
  • Jones, D. A., Lelyveld, T. P., Mavrofidis, S. D., Kingman, S. W., Miles, N. J., 2002. Microwave Heating Applications in Environmental Engineering—A Review. Resources, Conservation and Recycling, 34(2), 75-90.
  • Jou, C. J., 2008. Degradation of Pentachlorophenol with Zero-Valence Iron Coupled with Microwave Energy. Journal of Hazardous Materials, 152(2), 699-702.
  • Kainthola, J., Shariq, M., Kalamdhad, A. S., Goud, V. V., 2019 . Enhanced Methane Potential of Rice Straw with Microwave Assisted Pretreatment and its Kinetic Analysis. Journal of Environmental Management, 232, 188-196.
  • Kenge, A. A., Liao, P. H., Lo, K. V., 2009. Treating Solid Dairy Manure Using Microwave-Enhanced Advanced Oxidation Process. Journal of Environmental Science and Health, Part B, 44(6), 606-612.
  • Kennedy, K., J., Thibault, G., & Droste, R. L., 2007. Microwave Enhanced Digestion of Aerobic SBR Sludge. Water SA, 33, 2, 261-270.
  • Kepp, U., Machenbach, I., Weisz, N., Solheim, O. E., 2000. Enhanced Stabilisation of Sewage Sludge Through Thermal Hydrolysis-Three Years of Experience with Full Scale Plant. Water Science and Technology, 42(9), 89-96.
  • Kim, D. H., Cho, S. K., Lee, M. K., & Kim, M. S., 2013. Increased Solubilization of Excess Sludge Does Not Always Result in Enhanced Anaerobic Digestion Efficiency. Bioresource Technology, 143, 660-664.
  • Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., Lee, J., 2003. Effects of Various Pretreatments for Enhanced Anaerobic Digestion with Waste Activated Sludge. Journal of Bioscience and Bioengineering, 95(3), 271-275.
  • Kor-Bicakci, G., Abbott, T., Ubay-Cokgor, E., Eskicioglu, C., 2017. Effect of Microwave Pretreatment on Removal of Triclosan During Anaerobic Digestion of Wastewater Treatment Sludge. Proceedings of the Water Environment Federation, (9), 3062-3082.
  • Kor-Bicakci, G., Ubay-Cokgor, E.,Eskicioglu, C., 2019. Effect of Dewatered Sludge Microwave Pretreatment Temperature and Duration on Net Energy Generation and Biosolids Quality From Anaerobic Digestion. Energy, 168, 782-795.
  • Koster, I. W., Lettinga, G., 1984 . The Influence of Ammonium-Nitrogen on the Specific Activity of Pelletized Methanogenic Sludge. Agricultural Wastes, 9(3), 205-216.
  • Koupaie, E. H., & Eskicioglu, C., 2016. Conventional Heating vs. Microwave Sludge Pretreatment Comparison Under Identical Heating/Cooling Profiles for Thermophilic Advanced Anaerobic Digestion. Waste Management, 53, 182-195.
  • Koupaie, E. H., Eskicioglu, C., 2015. Below and Above Boiling Point Comparison of Microwave Irradiation and Conductive Heating for Municipal Sludge Digestion Under Identical Heating/Cooling Profiles. Bioresource Technology, 187, 235–245.
  • Kuan ,W., Chen C,L., Lo ,S,L., 2008. Application of MW Energy on the Stabilization of Copper-Contained Industry Sludge. Research Journal of Chemical and Environment, 12(3):77–81.
  • Kuglarz, M., Karakashe, D., Angelidaki, I., 2013. Microwave and Thermal Pretreatment as Methods for Increasing the Biogas Potential of Secondary Sludge from Municipal Wastewater Treatment Plants. Bioresource Technology, 134, 290-297.
  • Iacovidou, E., Ohandja, D. G., Voulvoulis, N., 2012. Food Waste Co-Digestion With Sewage Sludge–Realising its Potential in the UK. Journal of Environmental Management, 112, 267-274.
  • Labuza, T. P., 1992. The Kinetics of Nonenzymatic Browning. Physical Chemistry of Foods.
  • Lee, D. J., Lee, S. Y., Bae, J. S., Kang, J. G., Kim, K. H., Rhee, S. S., Seo, D. C., 2015. Effect of Volatile Fatty Acid Concentration on Anaerobic Degradation Rate from Field Anaerobic Digestion Facilities Treating Food Waste Leachate in South Korea. Journal of Chemistry, https://doi.org/10.1155/2015/640717.
  • Liang, C., Bruell, C. J., Marley, M. C., Sperry, K. L., 2004. Persulfate Oxidation for in Situ Remediation of TCE. I. Activated by Ferrous Ion with and Without A Persulfate–Thiosulfate Redox Couple. Chemosphere, 55(9), 1213-1223.
  • Liao, P. H., Lo, K. V., Chan, W. I., Wong, W. T., 2007. Sludge Reduction and Volatile Fatty Acid Recovery Using Microwave Advanced Oxidation Process. Journal of Environmental Science and Health Part A, 42(5), 633-639.
  • Liao, P. H., Mavinic, D. S., Koch, F. A., 2003. Release of Phosphorus from BNR Sludges: A Study of Sludge Pre-Treatment Methods to Optimize Phosphorus Release for Subsequent Recovery Purpose. Journal of Environmental Engineering and Science, 2, 369-81.
  • Liao, P. H., Wong, W. T., Lo, K. V., 2005a. Release of Phosphorus from Sewage Sludge Using Microwave Technology. Journal of Environmental Engineering and Science, 4(1), 77-81.
  • Liao, P. H., Wong, W. T., Lo, K. V., 2005b. Advanced Oxidation Process using Hydrogen Peroxide/Microwave System for Solubilization of Phosphate. Journal of Environmental Science and Health, 40(9), 1753-1761.
  • Liu, J., Yu, D., Zhang, J., Yang, M., Wang, Y., Wei, Y., Tong, J., 2016. Rheological Properties of Sewage Sludge During Enhanced Anaerobic Digestion with Microwave-H2O2 Pretreatment. Water Research, 98, 98-108.
  • Lo, K. V., Srinivasan, A., Liao, P. H., Bailey, S., 2015. Microwave Oxidation Treatment of Sewage Sludge. Journal of Environmental Science and Health, Part A, 50(8), 882-889.
  • Lo, K. V., Tan, H., Tunile, I., Burton, T., Kang, T., Srinivasan, A., Liao, P. H., 2018. Microwave Enhanced Advanced Oxidation Treatment of Municipal Wastewater Sludge. Chemical Engineering and Processing-Process Intensification, 128, 143-148.
  • Lu, J., 2019. Carbon Footprint and Reduction Potential of Chinese Wastewater Treatment Sector. Master Thesis. University of Science And Technology of China, China (in Chinese).
  • Machnicka, A., Nowicka, E., Grübel, K., 2017. Disintegration as a Key-Step in Pre-Treatment of Surplus Activated Sludge. Journal of Water Chemistry and Technology, 39(1), 47-55.
  • Madigan, M. T., J. M. M., Paul.V.D., David.P.C., 2005. Brock Biology of Microorganisms , 11th Edn. (International Edition).
  • Mata-Alvarez, J., Macé, S., Llabres, P., 2000. Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives. Bioresource Technology, 74(1), 3-16.
  • Mawioo, P. M., Rweyemamu, A., Garcia, H. A., Hooijmans, C. M., Brdjanovic, D., 2016. Evaluation of a Microwave Based Reactor for the Treatment of Blackwater Sludge. Science of The Total Environment, 548–549, 72–81.
  • Mehdizadeh, S. N., Eskicioglu, C., Bobowski, J., Johnson, T., 2013. Conductive Heating and Microwave Hydrolysis under Identical Heating Profiles for Advanced Anaerobic Digestion for Municipal Sludge. Water Research, 47(14), 5040-5051.
  • Miguel, N., Coelho, G., Droste, R. L., Kennedy, K. J., 2011. Evaluation of Continuous Mesophilic, Thermophilic and Temperature Phased Anaerobic Digestion of Microwaved Activated Sludge. Water Research, 45(9), 2822–2834.
  • Milieu, Wrc, RPA., 2010. Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Final Report, Part III: Project Interim Reports . DG ENV.G.4/ETU/2008/0076r.
  • Mottet, A., Steyera, J.P., Del Erisb, S., Vedrenneb, F., Chauzyc, J., Carr Ere, H., 2009. Kinetics of Thermophilic Batch Anaerobic Digestion of Thermal Hydrolysed Waste Activated Sludge. Biochemical Engineering Journal, 46, 169-175.
  • Müller, J. A., 2001. Prospects and Problems of Sludge Pre-Treatment Processes. Water Science and Technology, 44(10), 121-128.
  • Müller, J., Lehne, G., Schwedes, J., Battenberg, S., Näveke, R., Kopp, J.,Hempel, D. C., 1998. Disintegration of Sewage Sludges and Influence and Anaerobic Digestion. Water Science and Technology, 38(8-9), 425-433.
  • Nascimento, A. L., Souza, A. J., Andrade, P. A. M., Andreote, F. D., Coscione, A. R., Oliveira, F. C., Regitano, J. B., 2018. Sewage Sludge Microbial Structures and Relations to Their Sources, Treatments, and Chemical Attributes. Frontiers in Microbiology, 3,9, 1462.
  • Neis, U., 2000. Ultrasound in Water, Wastewater and Sludge Treatment. Water 21, 36–39 .
  • Özön, E., Erdinçler, A., 2019. Effects of Microwave, H2O2/MW and H2O2/Heat Pre-Treatments on the Methane Production from Wastewater Sludges: Experimental and Modeling Approach. Environmental Science and Pollution Research, 26(35), 35411-35421.
  • Park, B., Ahn, J. H., Kim, J., Hwang, S., 2004. Use of Microwave Pretreatment for Enhanced Anaerobiosis of Secondary Sludge. Water Science and Technology, 50(9), 17-23.
  • Park, W. J., Ahn, J. H., Lee, C. K., 2009. Effect of Temperature-Increase Rate and Terminal Temperature on the Solubilization of Sewage Sludge Using Microwave Irradiation. Environmental Engineering Research, 14(1), 48-52.
  • Park, W., Ahn, J., Hwang, S., Lee, C., 2010. Effect of Output Power, Target Temperature, and Solid Concentration on the Solubilization of Waste Activated Sludge Using Microwave Irradiation. Bioresource Technology, 101(1), S13–S16.
  • Parkin, G. F., Owen, W. F., 1986. Fundamentals of Anaerobic Digestion of Wastewater Sludges. Journal of Environmental Engineering, 112(5), 867-920.
  • Passos, F., Solé, M., García, J., Ferrer, I., 2013. Biogas Production from Microalgae Grown in Wastewater: Effect of Microwave Pretreatment. Applied Energy, 108, 168–175.
  • Penaud, V., Delgenès, J. P., Moletta, R., 1999. Thermo-Chemical Pretreatment of a Microbial Biomass: Influence of Sodium Hydroxide Addition on Solubilization and Anaerobic Biodegradability. Enzyme and Microbial Technology, 25(3-5), 258-263.
  • Pinnekamp, J., 1988. Effects of Thermal Pretreatment of Sewage Sludge on Anaerobic Digestion. Water Science and Technology,18-21 July, 97-108.
  • Pino‐Jelcic, S. A., Hong, S. M., Park, J. K., 2006. Enhanced Anaerobic Biodegradability and Inactivation of Fecal Coliforms and Salmonella Spp. in Wastewater Sludge by using Microwaves. Water Environment Research, 78(2), 209-216.
  • Plazl, I., Leskovšek, S.,Koloini, T., 1995. Hydrolysis of Sucrose by Conventional and Microwave Heating in Stirred Tank Reactor. The Chemical Engineering Journal and the Biochemical Engineering Journal, 59(3), 253-257.
  • Qiao, W., Wang, W., Xun, R., Lu, W., Yin, K., 2008. Sewage Sludge Hydrothermal Treatment by Microwave İrradiation Combined with Alkali Addition. Journal of Materials Science, 43(7), 2431-2436.
  • Qiao, W., Wang, W., Zhu, C., Zhang, Z., 2010. Biogas Recovery from Microwave Heated Sludge by Anaerobic Digestion. Science in China Series E: Technological Sciences, 53(1), 144-149.
  • Rani, R. U., Kumar, S. A., Kaliappan, S., Yeom, I., Banu, J. R., 2013. Impacts of Microwave Pretreatments on the Semi-Continuous Anaerobic Digestion of Dairy Waste Activated Sludge. Waste Management, 33(5), 1119–1127.
  • Ray, B. T., Lin, J. G., Rajan, R. V., 1990. Low-Level Alkaline Solubilization for Enhanced Anaerobic Digestion. Research Journal of The Water Pollution Control Federation, 81-87.
  • Remya, N., Lin, J. G., 2011. Current Status of Microwave Application in Wastewater Treatment—A Review. Chemical Engineering Journal, 166(3), 797-813.
  • Saha, M., Eskicioglu, C., Marin, J., 2011. Microwave, Ultrasonic and Chemo-Mechanical Pretreatments for Enhancing Methane Potential of Pulp Mill Wastewater Treatment Sludge. Bioresource Technology, 102(17), 7815-7826.
  • Saifuddin, N., Fazlili, S. A., 2009. Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt. American Journal of Engineering and Applied Sciences, 2(1).
  • Savoo, S., Mudhoo, A., 2018. Biomethanation Macrodynamics of Vegetable Residues Pretreated by Low-Frequency Microwave Irradiation. Bioresource Technology, 248, 280-286.
  • Serrano, A., Siles, J. A., Martín, M. A., Chica, A. F., Estévez-Pastor, F. S., Toro-Baptista, E., 2016. Improvement of Anaerobic Digestion of Sewage Sludge Through Microwave Pre-Treatment. Journal of Environmental Management, 177, 231-239.
  • Siddique, M. N. I., Munaim, M. S. A., Wahid, Z. B. A., 2017. The Combined Effect of Ultrasonic and Microwave Pre-Treatment on Bio-Methane Generation from Co-Digestion of Petrochemical Wastewater. Journal of Cleaner Production, 145, 303-309.
  • Sólyom, K., Mato, R. B., Pérez-Elvira, S. I., Cocero, M. J., 2011. The Influence of the Energy Absorbed from Microwave Pretreatment on Biogas Production from Secondary Wastewater Sludge. Bioresource Technology, 102(23), 10849-10854.
  • Spinosa, L., Vesilind, P. A., 2001. Sludge into Biosolids. Handbook of Processing, Disposal, Utilization. Pp 394. IWA Publishing, London.
  • Tanaka, S., Kobayashi, T., Kamiyama, K., N, M. L., Bildan, S., 1997. Effects of Thermochemical Pretreatment on the Anaerobic Digestion of Waste Activated Sludge. Water Science and Technology, 35(8), 209–215.
  • Thomas, L., Jun Thomas, L., Jungschaffer, G., Sprössler, B., 1993. Improved Sludge Dewatering by Enzymatic Treatment. Water Science and Technology, 28(1), 189-192.
  • Tiehm, A., Nickel, K., Zellhorn, M., Neis, U., 2001. Ultrasonic Waste Activated Sludge Disintegration for Improving Anaerobic Stabilization. Water Research, 35(8), 2003-2009.
  • Toreci, I., Droste, R. L., Kennedy, K. J., 2011. Mesophilic Anaerobic Digestion with High‐Temperature Microwave Pretreatment and Importance of Inoculum Acclimation. Water Environment Research, 83(6), 549-559.
  • Toreci, I., Kennedy, K. J., Droste, R. L., 2009. Evaluation of Continuous Mesophilic Anaerobic Sludge Digestion After High Temperature Microwave Pretreatment. Water Research, 43(5), 1273–1284.
  • Toreci, I., Kennedy, K. J.,Droste, R. L., 2010. Effect of High-Temperature Microwave Irradiation on Municipal Thickened Waste Activated Sludge Solubilization. Heat Transfer Engineering, 31(9), 766-773.
  • TÜİK2018.Tuik.Gov.Tr/Prehaberbultenleri.Do?İd=30667#:~:Text=At%C4%B1ksu%20ar%C4%B1tma%20tesisl.Eri%20ile%20hizmet,X%2C7%20olarak%20hesapland%C4%B1.&Text=Belediyeler%20taraf%C4%B1ndan%20kanalizasyon%20%C5%9Febekesi%20ile,Miktar%C4%B1%20188%20litre%20olarak%20hesapland%C4%B1.
  • TÜİK2021. Https://Data.Tuik.Gov.Tr/Bulten/Index?P=Adrese-Dayal%C4%B1-N%C3%Bcfus-Kay%C4%B1t-Sistemi-Sonu%C3%A7lar%C4%B1-2020-37210&Dil=1.
  • Tyagi, V. K., Lo, S. L., 2013. Microwave Irradiation: A Sustainable Way for Sludge Treatment and Resource Recovery. Renewable and Sustainable Energy Reviews, 18, 288-305.
  • Tyagi, V. K., Lo, S. L., Appels, L., Dewil, R., 2014b. Ultrasonic Treatment of Waste Sludge: A Review on Mechanisms and Applications. Critical Reviews in Environmental Science and Technology, 44(11), 1220-1288.
  • Tyagi, V. K., Lo, S. L., Rajpal, A., 2014a. Chemically Coupled Microwave and Ultrasonic Pre-Hydrolysis of Pulp and Paper Mill Waste-Activated Sludge: Effect on Sludge Solubilisation and Anaerobic Digestion. Environmental Science and Pollution Research, 21(9), 6205-6217.
  • Valo, A., Carrère, H., Delgenès, J. P., 2004. Thermal, Chemical and Thermo‐Chemical Pre‐Treatment of Waste Activated Sludge for Anaerobic Digestion. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 79(11), 1197-1203.
  • Verlicchi, P., Zambello, E.,2015. Pharmaceuticals and Personal Care Products in Untreated and Treated Sewage Sludge: Occurrence and Environmental Risk in The Case of Application on Soil—A Critical Review. Science of the Total Environment, 538, 750-767.
  • Wainaina, S., Awasthi, M. K., Sarsaiya, S., Chen, H., Singh, E., Kumar, A., Taherzadeh, M. J., 2020. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresource Technology, 301, 122778.
  • Wang, C., Shao, Z., Qiu, L., Hao, W., Qu, Q., Sun, G., 2021. The Solid-State Physicochemical Properties and Biogas Production of the Anaerobic Digestion of Corn Straw Pretreated by Microwave Irradiation. RSC Advances, 11(6), 3575-3584.
  • Wang, Y., Gui, C., Ni, X., Chen, M., Wei, Y., 2015 . Multivariate Analysis of Sludge Disintegration by Microwave-Hydrogen Peroxide Pretreatment Process. Journal of Hazardous Materials, 283, 856-864.
  • Wang, Y., Wei, Y., Liu, J., 2009. Effect of H2O2 Dosing Strategy on Sludge Pretreatment by Microwave- H2O2 Advanced Oxidation Process. Journal of Hazardous Materials, 169(1-3), 680-684.
  • Wang, Z., Wang, W., Zhang, X., 2006. Integrated Process of Thermal Hydrolysis and Anaerobic Sequencing Batch Reactor for the Treatment of Sewage Sludge. Acta Scientiarum Naturalium-Universitatis Pekinensis, 42(6), 746.
  • Weemaes, M. P., Verstraete, W. H., 1998. Evaluation of Current Wet Sludge Disintegration Techniques. Journal of Chemical Technology & Biotechnology 73(2), 83-92.
  • Westerholm, M., Crauwels, S., Geel, M. Van, Dewil, R., Lievens, B., Appels, L., 2016. Microwave and Ultrasound Pre-Treatments Influence Microbial Community Structure and Digester Performance in Anaerobic Digestion of Waste Activated Sludge. Applied Microbiology and Biotechnology, 5339–5352.
  • Wojciechowska, E., 2005. Application of Microwaves for Sewage Sludge Conditioning. Water Research, 39(19), 4749-4754.
  • Wong, W. T., Chan, W. I., Liao, P. H., Lo, K. V., Mavinic, D. S., 2006. Exploring the Role of Hydrogen Peroxide in the Microwave Advanced Oxidation Process: Solubilization of Ammonia and Phosphates. Journal of Environmental Engineering and Science, 5(6), 459-465.
  • Wong, W. T., Lo, K. V., Liao, P. H.,2007. Factors Affecting Nutrient Solubilization from Sewage Sludge Using Microwave-Enhanced Advanced Oxidation Process. Journal of Environmental Science and Health, Part A, 42(6), 825-829.
  • Woo, I. S., Rhee, I. K., Park, H. D., 2000. Differential Damage in Bacterial Cells by Microwave Radiation on the Basis of Cell Wall Structure. Applied and Environmental Microbiology, 66(5), 2243-2247.
  • Xia, D. K., Picklesi, C. A., 2000. Microwave Caustic Leaching of Electric Arc Furnace Dust. Minerals Engineering, 13(1), 79-94.
  • Xu, C. C., Lancaster, J., 2009. Treatment of Secondary Sludge for Energy Recovery. Energy Recover. Nov. Sci. Publ. Inc., New.
  • Yan, Y., Chen, H., Xu, W., He, Q., Zhou, Q., 2013. Enhancement of Biochemical Methane Potential from Excess Sludge with Low Organic Content by Mild Thermal Pretreatment. Biochemical Engineering Journal, 70, 127-134.
  • Yang, Q., Yi, J., Luo, K., Jing, X., Li, X., Liu, Y., Zeng, G., 2013. Improving Disintegration and Acidification of Waste Activated Sludge by Combined Alkaline and Microwave Pretreatment. Process Safety and Environmental Protection, 91(6), 521-526.
  • Yawson, S. K., Liao, P. H., Lo, K. V., 2011. Two-Stage Dilute Acid Hydrolysis of Dairy Manure for Nutrient Release, Solids Reduction and Reducing Sugar Production. Natural Resources, 2(04), 224.
  • Yeneneh, A. M., Chong, S., Sen, T. K., Ang, H. M., Kayaalp, A., 2013a. Effect of Ultrasonic, Microwave and Combined Microwave–Ultrasonic Pretreatment of Municipal Sludge on Anaerobic Digester Performance. Water, Air, & Soil Pollution, 224(5), 1-9.
  • Yeneneh, A. M., Kayaalp, A., Sen, T. K., Ang, H. M., 2015. Effect of Microwave and Combined Microwave-Ultrasonic Pretreatment on Anaerobic Digestion of Mixed Real Sludge. Journal of Environmental Chemical Engineering, 3(4), 2514-2521.
  • Yeneneh, A., Sen, T., Chong, S., Ang, H. M., Kayaalp, A., 2013b. Effect of Combined Microwave-Ultrasonic Pretreatment on Anaerobic Biodegradability of Primary, Excess Activated and Mixed Sludge. Computational Water, Energy, and Environmental Engineering, 2, 7-11.
  • Yi, W. G., Lo, K. V., Mavinic, D. S., 2014. Effects of Microwave, Ultrasonic and Enzymatic Treatment on Chemical and Physical Properties of Waste-Activated Sludge. Journal of Environmental Science and Health, Part A, 49(2), 203-209.
  • Yin, G., Liao, P. H., Lo, K. V., 2007. An Ozone/Hydrogen Peroxide/Microwave-Enhanced Advanced Oxidation Process for Sewage Sludge Treatment. Journal of Environmental Science and Health, Part A, 42(8), 1177-1181.
  • Yu, T., Deng, Y., Liu, H., Yang, C., Wu, B., Zeng, G., Nishimura, F., 2017. Effect of Alkaline Microwaving Pretreatment on Anaerobic Digestion and Biogas Production of Swine Manure. Scientific Reports, 7(1), 1-8.
  • Zaidi, A. A., Feng, R., Malik, A., Khan, S. Z., Shi, Y., Bhutta, A. J., Shah, A. H., 2019. Combining Microwave Pretreatment with Iron Oxide Nanoparticles Enhanced Biogas and Hydrogen Yield from Green Algae. Processes, 7(1), 24.
  • Zhang, L., Guo, X., Yan, F., Su, M., Li, Y., 2007. Study of The Degradation Behaviour of Dimethoate Under Microwave Irradiation. Journal of Hazardous Materials, 149(3), 675-679.
  • Zhang, Q. H., Yang, W. N., Ngo, H. H., Guo, W. S., Jin, P. K., Dzakpasu, M., Yang, S. J., Wang, Q., Wang, X. C., Ao, D., 2016. Current Status of Urban Wastewater Treatment Plants in China. 93, 11–22.
  • Zhen, Z., Xu, Y., Bin, L., 2011. Effect and Mechanism of Microwave Irradiation and Alkaline Solubilization as a Combined Method on Sludge. International Conference on Remote Sensing, Environment and Transportation Engineering (pp. 1135-1138) IEEE .
  • Zheng, J., Kennedy, K. J., Eskicioglu, C., 2009. Effect of Low Temperature Microwave Pretreatment on Characteristics and Mesophilic Digestion of Primary Sludge. Environmental Technology, 30(4), 319-327.
  • Zhou, B. W., Shin, S. G., Hwang, K., Ahn, J. H., Hwang, S., 2010. Effect of Microwave Irradiation on Cellular Disintegration of Gram Positive and Negative Cells. Applied Microbiology and Biotechnology, 87(2), 765-770.
There are 175 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Review Articles
Authors

Alı Alhraıshawı 0000-0003-4099-9042

Şükrü Aslan 0000-0001-8735-8029

Publication Date June 30, 2022
Submission Date May 2, 2021
Acceptance Date December 17, 2021
Published in Issue Year 2022

Cite

APA Alhraıshawı, A., & Aslan, Ş. (2022). ANAEROBİK ÇÜRÜTME ÖNCESİ ATIK BİYOLOJİK ÇAMURLARIN MİKRODALGA RADYASYONU İLE DEZENTEGRASYONU. Mühendislik Bilimleri Ve Tasarım Dergisi, 10(2), 740-760. https://doi.org/10.21923/jesd.931036