Research Article
BibTex RIS Cite

KONFORLU SÜRÜŞ İÇİN ULUSLARARASI DÜZGÜNSÜZLÜK İNDEKSİ SINIR DEĞERLERİNİN BELİRLENMESİ

Year 2018, Volume: 6 Issue: 2, 301 - 309, 23.06.2018
https://doi.org/10.21923/jesd.416037

Abstract

Karayolu üstyapıları, sürüş sırasında yol
kullanıcılarına konforu ve güvenliği sağlayan önemli bir bileşendir. Bu
nedenle, karayolu işletiminden sorumlu otoritelerce, üstyapıların hizmet
düzeylerinin iyi durumda olması oldukça önemsenmektedir. Çalışmada, bitümlü sıcak karışım kaplamalı devlet yollarında,
otomobiller için üstyapıların mevcut hizmet düzeyi ile sürüş konforu arasındaki
ilişkilerin araştırılması ve ISO 2631 standardında açıklanan konfor
kriterlerine göre IRI’nın sınır değerlerinin belirlenmesi amaçlanmıştır. Bu
amaçla, şehirlerarası bağlantı sağlayan yaklaşık 80 km uzunluğunda bir devlet
yolunda IRI ölçümleri yapılmış ve yol kesimlere ayrılarak değerlendirilmiştir.
Aynı yol kesimlerinde, farklı sürüş hızlarında taşıt içerisinde sürücü koltuğu
üzerinden düşey doğrultuda titreşim verileri ölçülmüştür. Ölçümler ISO 2631
kodlu standarda göre değerlendirilerek awz değerleri bulunmuştur.
Değerlendirilen yol kesimine ait ortalama sürüş hızı ve awz verileri
ile IRI arasında yapay sinir ağı tekniği kullanılarak matematiksel model
geliştirilmiştir. Geliştirilen model aracılığıyla ISO standardında belirtilen
konfor seviyelerine bağlı olarak farklı sürüş hızları için IRI’nın sınır
değerleri belirlenmiştir. Analizler sonucunda, konforlu bir sürüş için hız
arttıkça IRI sınır değerlerinin azaldığı tespit edilmiştir.

References

  • Abudinen, D., Fuentes, L.G., Carvajal Muñoz, J.S., 2017. Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of The Transportation Research Board, 2612, 1-10.
  • Ahlin, K., Granlund, N.O.J., 2002. Relating Road Roughness and Vehicle Speeds To Human Whole Body Vibration and Exposure Limits. International Journal of Pavement Engineering, 3, 207-216.
  • ASTM 2008. Standard Practice For Computing International Roughness Index of Roads From Longitudinal Profile Measurements. ASTM E 1923-08. West Conshohocken, Pa: ASTM International.
  • ASTM 2009. Standard Test Method For Measuring The Longitudinal Profile of Traveled Surfaces With An Accelerometer Established Inertial Profiling Reference. ASTM E 950. West Conshohocken, Pa: ASTM International.
  • Attoh-Okine, N.O., 1999. Analysis of Learning Rate and Momentum Term In Backpropagation Neural Network Algorithm Trained to Predict Pavement Performance. Advances in Engineering Software, 30, 291-302.
  • Cantisani, G., Loprencipe, G., 2010. Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136, 818-826.
  • Carey Jr, W. N., Irick, P. E., 1960. The Pavement Serviceability-Performance Concept. Highway Research Board Bulletin, 40-58.
  • Duarte, M. L. M. , De Melo, G. C., 2018. Influence of Pavement Type and Speed on Whole Body Vibration (WBV) Levels Measured on Passenger Vehicles. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 40.
  • Griffin, M. J., 2007. Discomfort From Feeling Vehicle Vibration. Vehicle System Dynamics, 45, 679-698.
  • Griffin, M. J., 2012. Handbook Of Human Vibration, London, Uk, Academic Press.
  • Haas, R., Hudson, W. R., Zaniewski, J. P., 1994. Modern Pavement Management, Malabar, Florida, Usa, Krieger Pub. Co.
  • ISO 1997. Mechanical Vibration and Shock - Evaluation Of Human Exposure To Whole-Body Vibration, Part 1: General Requirement. ISO 2631-1. Geneva, Switzerland: ISO.
  • ISO 2005. Human Response To Vibration - Measuring Instrumentation. ISO BS EN 8041:2005. Geneva, Switzerland: ISO.
  • Kecman, V., 2001. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models, Massachussetts, Usa, Mit Press.
  • Kim, M. S., Kim, K. W. , Yoo, W. S. 2011. Method To Objectively Evaluate Subjective Ratings Of Ride Comfort. International Journal Of Automotive Technology, 12, 831-837.
  • Kırbaş, U. , Karaşahin, M., 2016. Investigation of Ride Comfort Limits on Urban Asphalt Concrete Pavements. International Journal of Pavement Engineering, 1-7.
  • Perera, R. W., Kohn, S. D. 2005. Quantification of Smoothness Index Differences Related To Long-Term Pavement Performance Equipment Type. Georgetown Pike: Federal Highway Administration.
  • Sayers, M. W., 1995. on The Calculation of International Roughness Index From Longitudinal Road Profile. Transportation Research Record, 1501, 1-12.
  • Sayers, M. W., Gillespie, T. D., Queiroz, C. A. V., 1986. The International Road Roughness Experiment: Establishing Correlation and A Calibration Standard For Measurements, Washington, D.C., U.S.A., The World Bank.
  • Sayers, M. W., Karamihas, S. M., 1996. Interpretation of Road Roughness Profile Data. UMTRI 96-19, Final Report, Federal Highway Administration.
  • Sayers, M. W., Karamihas, S. M., 1998. The Little Book of Profiling, Michigan, University of Michigan.
  • Shahin, M. Y., 2005. Pavement Management For Airports, Roads, and Parking Lots, New York, Springer.
  • Terzi, S., 2007. Modeling The Pavement Serviceability Ratio of Flexible Highway Pavements By Artificial Neural Networks. Construction and Building Materials, 21, 590-593.
  • Terzi, S., 2013. Modeling For Pavement Roughness Using The Anfis Approach. Advances In Engineering Software, 57, 59-64.
  • Wang, F., Easa, S., 2016. Analytical Evaluation of Ride Comfort on Asphalt Concrete Pavements. Journal of Testing and Evaluation, 44, 1671-1682.
  • Yu, J., Chou, E. Y. J., Yau, J.-T., 2006. Development of Speed-Related Ride Quality Thresholds Using International Roughness Index. Transportation Research Record: Journal of The Transportation Research Board, 1974, 47-53.

DETERMINATION OF INTERNATIONAL ROUGHNESS INDEX LIMIT VALUES FOR COMFORTABLE RIDING

Year 2018, Volume: 6 Issue: 2, 301 - 309, 23.06.2018
https://doi.org/10.21923/jesd.416037

Abstract

Highway pavements are an important component that
provides comfort and safety for road users while riding. Therefore, by the
authorities responsible for road operation, it is quite important that the
level of service of the pavements is in good condition. In the study, it was
aimed to investigate the relationship between the existing serviceability level
of the pavements and the ride comfort for passenger cars, and to determine the
limit values of IRI according to the comfort criteria described in the ISO 2631
standard. For this purpose, IRI measurements were made on a state road about 80
km long providing intercity connections and the road was divided into sections
evaluated. In the same road sections, vibration data were measured in the
vertical direction over the driver's seat in the vehicle at different ride
speeds. The measurements were evaluated according to the ISO 2631 coded
standard and the awz values were found. A mathematical model was
developed using the artificial neural network method between the average ride
speed and awz data of the assessed road sections, and the IRI data.
By means of the developed model, the limits of IRI have been determined for
different ride speeds depending on the comfort levels specified in the ISO
standard. As a result of the analyses, it was determined that as the ride speed
increases for comfortable riding, the IRI limit values decrease.

References

  • Abudinen, D., Fuentes, L.G., Carvajal Muñoz, J.S., 2017. Travel Quality Assessment of Urban Roads Based on International Roughness Index. Transportation Research Record: Journal of The Transportation Research Board, 2612, 1-10.
  • Ahlin, K., Granlund, N.O.J., 2002. Relating Road Roughness and Vehicle Speeds To Human Whole Body Vibration and Exposure Limits. International Journal of Pavement Engineering, 3, 207-216.
  • ASTM 2008. Standard Practice For Computing International Roughness Index of Roads From Longitudinal Profile Measurements. ASTM E 1923-08. West Conshohocken, Pa: ASTM International.
  • ASTM 2009. Standard Test Method For Measuring The Longitudinal Profile of Traveled Surfaces With An Accelerometer Established Inertial Profiling Reference. ASTM E 950. West Conshohocken, Pa: ASTM International.
  • Attoh-Okine, N.O., 1999. Analysis of Learning Rate and Momentum Term In Backpropagation Neural Network Algorithm Trained to Predict Pavement Performance. Advances in Engineering Software, 30, 291-302.
  • Cantisani, G., Loprencipe, G., 2010. Road Roughness and Whole Body Vibration: Evaluation Tools and Comfort Limits. Journal of Transportation Engineering, 136, 818-826.
  • Carey Jr, W. N., Irick, P. E., 1960. The Pavement Serviceability-Performance Concept. Highway Research Board Bulletin, 40-58.
  • Duarte, M. L. M. , De Melo, G. C., 2018. Influence of Pavement Type and Speed on Whole Body Vibration (WBV) Levels Measured on Passenger Vehicles. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 40.
  • Griffin, M. J., 2007. Discomfort From Feeling Vehicle Vibration. Vehicle System Dynamics, 45, 679-698.
  • Griffin, M. J., 2012. Handbook Of Human Vibration, London, Uk, Academic Press.
  • Haas, R., Hudson, W. R., Zaniewski, J. P., 1994. Modern Pavement Management, Malabar, Florida, Usa, Krieger Pub. Co.
  • ISO 1997. Mechanical Vibration and Shock - Evaluation Of Human Exposure To Whole-Body Vibration, Part 1: General Requirement. ISO 2631-1. Geneva, Switzerland: ISO.
  • ISO 2005. Human Response To Vibration - Measuring Instrumentation. ISO BS EN 8041:2005. Geneva, Switzerland: ISO.
  • Kecman, V., 2001. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models, Massachussetts, Usa, Mit Press.
  • Kim, M. S., Kim, K. W. , Yoo, W. S. 2011. Method To Objectively Evaluate Subjective Ratings Of Ride Comfort. International Journal Of Automotive Technology, 12, 831-837.
  • Kırbaş, U. , Karaşahin, M., 2016. Investigation of Ride Comfort Limits on Urban Asphalt Concrete Pavements. International Journal of Pavement Engineering, 1-7.
  • Perera, R. W., Kohn, S. D. 2005. Quantification of Smoothness Index Differences Related To Long-Term Pavement Performance Equipment Type. Georgetown Pike: Federal Highway Administration.
  • Sayers, M. W., 1995. on The Calculation of International Roughness Index From Longitudinal Road Profile. Transportation Research Record, 1501, 1-12.
  • Sayers, M. W., Gillespie, T. D., Queiroz, C. A. V., 1986. The International Road Roughness Experiment: Establishing Correlation and A Calibration Standard For Measurements, Washington, D.C., U.S.A., The World Bank.
  • Sayers, M. W., Karamihas, S. M., 1996. Interpretation of Road Roughness Profile Data. UMTRI 96-19, Final Report, Federal Highway Administration.
  • Sayers, M. W., Karamihas, S. M., 1998. The Little Book of Profiling, Michigan, University of Michigan.
  • Shahin, M. Y., 2005. Pavement Management For Airports, Roads, and Parking Lots, New York, Springer.
  • Terzi, S., 2007. Modeling The Pavement Serviceability Ratio of Flexible Highway Pavements By Artificial Neural Networks. Construction and Building Materials, 21, 590-593.
  • Terzi, S., 2013. Modeling For Pavement Roughness Using The Anfis Approach. Advances In Engineering Software, 57, 59-64.
  • Wang, F., Easa, S., 2016. Analytical Evaluation of Ride Comfort on Asphalt Concrete Pavements. Journal of Testing and Evaluation, 44, 1671-1682.
  • Yu, J., Chou, E. Y. J., Yau, J.-T., 2006. Development of Speed-Related Ride Quality Thresholds Using International Roughness Index. Transportation Research Record: Journal of The Transportation Research Board, 1974, 47-53.
There are 26 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ufuk Kırbaş 0000-0002-2389-425X

Publication Date June 23, 2018
Submission Date April 17, 2018
Acceptance Date May 18, 2018
Published in Issue Year 2018 Volume: 6 Issue: 2

Cite

APA Kırbaş, U. (2018). KONFORLU SÜRÜŞ İÇİN ULUSLARARASI DÜZGÜNSÜZLÜK İNDEKSİ SINIR DEĞERLERİNİN BELİRLENMESİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 6(2), 301-309. https://doi.org/10.21923/jesd.416037