Research Article
BibTex RIS Cite

INVESTIGATION OF MECHANICAL, PHYSICAL AND ELECTRICAL PROPERTIES OF GRAPHENE OXIDE BLENDED MORTARS

Year 2019, Volume: 7 Issue: 1, 196 - 204, 25.03.2019
https://doi.org/10.21923/jesd.451473

Abstract

In this study, mechanical, physical and electrical properties of graphene oxide-containing mortars at nano scale were investigated. Graphene oxide was added to the crushed-sandy mortars prepared at constant water / cement ratio and cement content at 0.0, 0.5, 1.0, 1.5 and 2.0%. After gaining the strengths of the mortars, mechanical properties such as compressive strength, splitting-tensile strength and point loading strength were determined. As physical properties, water absorption by weight, capillary water absorption, apparent porosity and bulk density were obtained. In addition, the electrical resistivity values of the mortars were determined at different frequency values (0.1, 1, 10 and 100 kHz). According to the results obtained, it was observed that mechanical properties were increased considerably (44% in the compressive strength) especially when 0.5% of graphene oxide was added into the mortar. The changes in the physical properties were only at a low level, but only in the increase of the capillary water absorption. Significant increases were also obtained in the electrical conductivity values of the mortars due to the structural nature of the graphene oxide.

References

  • Antonio, V.R.J., German, C.S. and Raymundo, M.M.E., 2016. Optimizing content graphene oxide in high strength concrete, International Journal of Scientific Research and Management, 4(6): 4324-4332
  • ASTM C 1760, 2012. Standard test method for bulk electrical conductivity of hardened concrete. West Conshohocken (PA): ASTM.
  • Bedeloğlu, A., Taş, M., 2016. Grafen ve Grafen Üretim Yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(031203), 544-554.
  • Chen, J., Li, Y., Huang, L., Li, C. and Shi, G. 2015, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81, 826-834
  • Chuah S., Pan Z., Sanjayan J.G., Wang C.M. and Duan W.H., 2014. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials 73, 113–124.
  • Du H., Gao H.J. and Pang S.D., 2016. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cement and Concrete Research 83, 114–123
  • Dzukarnain, MZB, Takami, T., Imai, H. and Ogino, T., 2016. Highly conductive, monolayer and large-area reduced graphene oxide films fabricated by electrical connection at the two-dimensional boundaries between the tiled graphene oxide flakes. Thin Solid Films, 615, 247-255.
  • Geim, A.K. and Novoselov K.S., 2007. The rise of graphene. Nature Materials, 6(3): 183-191.
  • Gong K, Pan, Z, Korayem, A.H. and Qiu, L., 2015. Reinforcing effects of graphene oxide on portland cement paste. Journal of Materials in Civil Engineering, 27(2): A4014010.
  • Guerrero-Contreras, J. and Caballero-Briones, F., 2015. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 153, 209-220.
  • Gupta, V.,Sharma, N., Singh, U., Arif, M., and Singh, A., 2017. Higher oxidation level in graphene oxide. Optik - International Journal for Light and Electron Optics, 143, 115-124.
  • Hu, X., Yu, Y., Wang, Y., Zhou, J. and Song, L., 2015. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution. Applied Surface Science, 329, 2015, 83–86.
  • Hummers, W.S., Offeman, R.E. 1958. Preparation of Graphite Oxide. Journal of American Chemical Society, 80 (6): 1339.
  • Korucu, H., Şimşek, B., Yartaşı, A., 2018. A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method. Arabian Journal for Science and Engineering, 43 (11): 6033-6055.
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., Zhou, Q., 2013. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials, 49:121–7.
  • Mohammed, A., Al-Saadi, N.T.K., Al-Mahaidi, R., 2016. Bond behaviour between NSM CFRP strips and concrete at high temperature using innovative high-strength self-compacting cementitious adhesive (IHSSC-CA) made with graphene oxide. Construction and Building Materials 127, 872–883.
  • Mohan, V.B., Jayaraman, K. Stamm, M., Bhattachharyya, D., 2016. Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Films, 616, 172–182.
  • Murugan, M., Santhanam, M., Gupta, S.S., Pradeep, T., Shah, S.P., 2016. Influence of 2D rGO nanosheets on the properties of OPC paste. Cement and Concrete Composites 70, 48-59.
  • Pan, Z., He, L., Qiu, L., Korayem, A.H., Li, G., Zhu, J.W., Collins, F., Li, D., Duan, W.H. and Wang, M.C., 2015. Mechanical properties and microstructure of a graphene oxide–cement composite. Cement & Concrete Composites, 58, 140–147.
  • Pekmezci, B.Y. ve Atahan, H.N., 2014. Kimyasal ve Nano Katkılar: Betonda Kullanımı ve Beton Performansına Etkileri, Hazır Beton, Mayıs-Haziran, 69-82.
  • Sedaghat, A, Ram, M.K., Zayed, A., Kamal, R. and Shanahan, N., 2014. Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications, Open Journal of Composite Materials, 4, 12-21.
  • Sharma S. and Kothiyal N.C., 2016. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Construction and Building Materials, 115, 256–268.
  • Şimşek, B., Ultav, G., Korucu, H., Yartaşı, A., 2018. Improvement of the Graphene Oxide Dispersion Properties with the Use of TOPSIS Based Taguchi Application. Periodica Polytechnica Chemical Engineering, 62 (3): 323-335.
  • Taşdemir, C., 2003. Combined effects of mineral admixtures and curing conditionson the sorptivity coefficient of concrete. Cement Concrete Research, 33(10):1637–42.
  • TS 3527, 1980. Beton Agregalarında İnce Madde Oranı Tayini. Türk Standartları Enstitüsü, Ankara, 7 sayfa.
  • TS EN 1097-3, 1999. Agregaların Fiziksel ve Mekanik Özellikleri İçin Deneyler Bölüm 3: Gevşek Yığın Yoğunluğunun ve Boşluk Hacminin Tayini. Türk Standartları Enstitüsü, Ankara, 20 sayfa.
  • TS EN 1097-6/A1, 2007. Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler Bölüm 6: Tane Yoğunluğuve Su Emme Oranının Tayini. Türk Standartları Enstitüsü, Ankara, 3 sayfa.
  • TS EN 1744-1, 2000. Agregaların Kimyasal Özellikleri İçin Deneyler- Bölüm 1: Kimyasal Analiz. Türk Standartları Enstitüsü, Ankara, 15 sayfa.
  • TS EN 196-1, 2016. Çimento deney metotları – Bölüm 1: Dayanım tayini, Türk Standartları Enstitüsü, Ankara.
  • TS ISO 9883, 1998. Yapıda performans standartları - Ön yapımlı beton döşemeler - Performans deneyleri -Noktasal yükleme altında davranış, Türk Standartları Enstitüsü, Ankara.
  • Wang, M., Wang, R., Yao, H., Farhan, S., Zheng, S. and Du, C., 2016. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Construction and Building Materials, 126, 730–739.
  • Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W. and Voon C.H., 2017. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering, 184, 469-477.
  • Zhao, J., Liu, L. and Li, F., 2015. Graphene Oxide: Physics and Applications. Springer Heidelberg New York Dordrecht, London. doi: 10.1007/978-3-662-44829-8
  • Zhu X.H., Kang X.J., Yang K. and Yang C.H., 2017. Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement. Construction and Building Materials, 132, 290–295

GRAFEN OKSİT KATKILI HARÇLARIN MEKANİK, FİZİKSEL VE ELEKTRİKSEL ÖZELİKLERİNİN ARAŞTIRILMASI

Year 2019, Volume: 7 Issue: 1, 196 - 204, 25.03.2019
https://doi.org/10.21923/jesd.451473

Abstract

Bu çalışmada, nano ölçekte grafen oksit içeren harçların mekanik ve fiziksel özelikleri ile elektriksel özelikleri araştırılmıştır. Sabit su/çimento oranında ve çimento içeriğinde hazırlanan kırma-kumlu harçlara %0.0, %0.5 %1.0, %1.5 ve %2.0 oranlarında grafen oksit ilave edilmiştir. Harçlar dayanımlarını kazandıktan sonra, mekanik özelik olarak basınç dayanımları, yarmada çekme dayanımları ve noktasal yükleme dayanımları belirlenmiştir. Fiziksel özelikleri olarak, ağırlıkça su emme, kapiler su emme, görünen porozite ve hacim yoğunlukları bulunmuştur. Ayrıca harçların elektriksel özdirenç değerleri de farklı frekans değerlerinde (0.1, 1, 10 ve 100 kHz) belirlenmiştir. Elde edilen sonuçlara göre, özellikle %0.5 oranında grafen oksidin harç içerisine ilave edilmesi durumunda mekanik özelikleri önemli derecede (basınçta %44) arttırdığı gözlenmiştir. Fiziksel özeliklerdeki değişimler oldukça düşük düzeydeyken sadece kapileritenin artmasında etkili olmuştur. Grafen oksidin yapısal özeliğine bağlı olarak harçların elektriksel iletkenlik değerlerinde de önemli artışlar elde edilmiştir.

References

  • Antonio, V.R.J., German, C.S. and Raymundo, M.M.E., 2016. Optimizing content graphene oxide in high strength concrete, International Journal of Scientific Research and Management, 4(6): 4324-4332
  • ASTM C 1760, 2012. Standard test method for bulk electrical conductivity of hardened concrete. West Conshohocken (PA): ASTM.
  • Bedeloğlu, A., Taş, M., 2016. Grafen ve Grafen Üretim Yöntemleri. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(031203), 544-554.
  • Chen, J., Li, Y., Huang, L., Li, C. and Shi, G. 2015, High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process. Carbon 81, 826-834
  • Chuah S., Pan Z., Sanjayan J.G., Wang C.M. and Duan W.H., 2014. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Construction and Building Materials 73, 113–124.
  • Du H., Gao H.J. and Pang S.D., 2016. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cement and Concrete Research 83, 114–123
  • Dzukarnain, MZB, Takami, T., Imai, H. and Ogino, T., 2016. Highly conductive, monolayer and large-area reduced graphene oxide films fabricated by electrical connection at the two-dimensional boundaries between the tiled graphene oxide flakes. Thin Solid Films, 615, 247-255.
  • Geim, A.K. and Novoselov K.S., 2007. The rise of graphene. Nature Materials, 6(3): 183-191.
  • Gong K, Pan, Z, Korayem, A.H. and Qiu, L., 2015. Reinforcing effects of graphene oxide on portland cement paste. Journal of Materials in Civil Engineering, 27(2): A4014010.
  • Guerrero-Contreras, J. and Caballero-Briones, F., 2015. Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 153, 209-220.
  • Gupta, V.,Sharma, N., Singh, U., Arif, M., and Singh, A., 2017. Higher oxidation level in graphene oxide. Optik - International Journal for Light and Electron Optics, 143, 115-124.
  • Hu, X., Yu, Y., Wang, Y., Zhou, J. and Song, L., 2015. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution. Applied Surface Science, 329, 2015, 83–86.
  • Hummers, W.S., Offeman, R.E. 1958. Preparation of Graphite Oxide. Journal of American Chemical Society, 80 (6): 1339.
  • Korucu, H., Şimşek, B., Yartaşı, A., 2018. A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method. Arabian Journal for Science and Engineering, 43 (11): 6033-6055.
  • Lv, S., Ma, Y., Qiu, C., Sun, T., Liu, J., Zhou, Q., 2013. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Construction and Building Materials, 49:121–7.
  • Mohammed, A., Al-Saadi, N.T.K., Al-Mahaidi, R., 2016. Bond behaviour between NSM CFRP strips and concrete at high temperature using innovative high-strength self-compacting cementitious adhesive (IHSSC-CA) made with graphene oxide. Construction and Building Materials 127, 872–883.
  • Mohan, V.B., Jayaraman, K. Stamm, M., Bhattachharyya, D., 2016. Physical and chemical mechanisms affecting electrical conductivity in reduced graphene oxide films. Thin Solid Films, 616, 172–182.
  • Murugan, M., Santhanam, M., Gupta, S.S., Pradeep, T., Shah, S.P., 2016. Influence of 2D rGO nanosheets on the properties of OPC paste. Cement and Concrete Composites 70, 48-59.
  • Pan, Z., He, L., Qiu, L., Korayem, A.H., Li, G., Zhu, J.W., Collins, F., Li, D., Duan, W.H. and Wang, M.C., 2015. Mechanical properties and microstructure of a graphene oxide–cement composite. Cement & Concrete Composites, 58, 140–147.
  • Pekmezci, B.Y. ve Atahan, H.N., 2014. Kimyasal ve Nano Katkılar: Betonda Kullanımı ve Beton Performansına Etkileri, Hazır Beton, Mayıs-Haziran, 69-82.
  • Sedaghat, A, Ram, M.K., Zayed, A., Kamal, R. and Shanahan, N., 2014. Investigation of Physical Properties of Graphene-Cement Composite for Structural Applications, Open Journal of Composite Materials, 4, 12-21.
  • Sharma S. and Kothiyal N.C., 2016. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Construction and Building Materials, 115, 256–268.
  • Şimşek, B., Ultav, G., Korucu, H., Yartaşı, A., 2018. Improvement of the Graphene Oxide Dispersion Properties with the Use of TOPSIS Based Taguchi Application. Periodica Polytechnica Chemical Engineering, 62 (3): 323-335.
  • Taşdemir, C., 2003. Combined effects of mineral admixtures and curing conditionson the sorptivity coefficient of concrete. Cement Concrete Research, 33(10):1637–42.
  • TS 3527, 1980. Beton Agregalarında İnce Madde Oranı Tayini. Türk Standartları Enstitüsü, Ankara, 7 sayfa.
  • TS EN 1097-3, 1999. Agregaların Fiziksel ve Mekanik Özellikleri İçin Deneyler Bölüm 3: Gevşek Yığın Yoğunluğunun ve Boşluk Hacminin Tayini. Türk Standartları Enstitüsü, Ankara, 20 sayfa.
  • TS EN 1097-6/A1, 2007. Agregaların Mekanik ve Fiziksel Özellikleri İçin Deneyler Bölüm 6: Tane Yoğunluğuve Su Emme Oranının Tayini. Türk Standartları Enstitüsü, Ankara, 3 sayfa.
  • TS EN 1744-1, 2000. Agregaların Kimyasal Özellikleri İçin Deneyler- Bölüm 1: Kimyasal Analiz. Türk Standartları Enstitüsü, Ankara, 15 sayfa.
  • TS EN 196-1, 2016. Çimento deney metotları – Bölüm 1: Dayanım tayini, Türk Standartları Enstitüsü, Ankara.
  • TS ISO 9883, 1998. Yapıda performans standartları - Ön yapımlı beton döşemeler - Performans deneyleri -Noktasal yükleme altında davranış, Türk Standartları Enstitüsü, Ankara.
  • Wang, M., Wang, R., Yao, H., Farhan, S., Zheng, S. and Du, C., 2016. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Construction and Building Materials, 126, 730–739.
  • Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W. and Voon C.H., 2017. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Engineering, 184, 469-477.
  • Zhao, J., Liu, L. and Li, F., 2015. Graphene Oxide: Physics and Applications. Springer Heidelberg New York Dordrecht, London. doi: 10.1007/978-3-662-44829-8
  • Zhu X.H., Kang X.J., Yang K. and Yang C.H., 2017. Effect of graphene oxide on the mechanical properties and the formation of layered double hydroxides (LDHs) in alkali-activated slag cement. Construction and Building Materials, 132, 290–295
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Tayfun Uygunoğlu 0000-0003-4382-8257

Barış Şimşek 0000-0002-0655-4368

Publication Date March 25, 2019
Submission Date August 7, 2018
Acceptance Date November 21, 2018
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Uygunoğlu, T., & Şimşek, B. (2019). GRAFEN OKSİT KATKILI HARÇLARIN MEKANİK, FİZİKSEL VE ELEKTRİKSEL ÖZELİKLERİNİN ARAŞTIRILMASI. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(1), 196-204. https://doi.org/10.21923/jesd.451473

Cited By


GRAFENİN BETONDA KULLANIMI HAKKINDA İNCELEME
Sürdürülebilir Mühendislik Uygulamaları ve Teknolojik Gelişmeler Dergisi
Muhammed YILMAZ
https://doi.org/10.51764/smutgd.945447