Research Article
BibTex RIS Cite

ADSORPTION ISOTHERMS OF KIWIFRUIT DRIED BY DIFFERENT DRYING METHODS

Year 2019, Volume: 7 Issue: 1, 167 - 174, 25.03.2019
https://doi.org/10.21923/jesd.487962

Abstract

The aim of this study was to
determine the moisture adsorption isotherms of kiwifruit dried by hot air,
vacuum and freeze drying methods. Equilibrium moisture contents (EMC) of dried
kiwifruits were obtained by using the standard gravimetric method at two different
temperatures (25 and 45°C) within a range of water activities from 0.112 to
0.936. The adsorption isotherms of dried kiwifruits decreased with increasing
temperature and exhibited type III behavior. Six different isotherm equations
(GAB (Guggenheim-Anderson-de Boer), BET (Brunauer-Emmett-Teller), Oswin,
Henderson, Halsey and Peleg) were employed to describe the experimental adsorption
isotherm data. Adsorption data obtained at both 25 and 45°C for vacuum dried
samples and data obtained at 45°C for hot air and freeze dried samples were
best represented by Peleg equation. For the samples dried by hot air and freeze
drying, GAB equation gave the best description of the experimental data
obtained at 25°C.

References

  • Akoy, E.O.M., von Hörsten, D., 2013. Moisture Sorption Isotherms of Mango Slices. International Journal of Agricultural and Food Science, 3(4), 164-170.
  • Al-Muhtaseb, A.H., McMinn, W.A.M., Magee, T.R.A., 2002. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, 80(C2), 118-128.
  • Andrade, R.D., Lemus, R., Perez, C.E., 2011. Models of Sorption Isotherms for Food: Uses and Limitations. Vitae- Revista de la Facultad de Quimica Farmaceutica, 18(3), 324-333.
  • Ayranci, E., Ayranci, G., Dogantan, Z., 1990. Moisture Sorption Isotherms of Dried Apricot, Fig and Raisin at 20 °C and 36 °C. Journal of Food Science, 55 (6), 1591-1593.
  • Brunauer, S., Deming, L.S., Deming, W.E., Troller, E., 1940. On the Theory of Van der Waals Adsorption of Gases, Journal of American Chemical Society, 62, 1723–1732.
  • Caballero-Ceron, C., Serment-Moreno, V., Velazquez, G., Torres, J.A., Welti-Chanes, J., 2018. Hygroscopic Properties and Glass Transition of Dehydrated Mango, Apple And Banana. Journal of Food Science and Technology-Mysore, 55(2), 540-549.
  • Castaldo, D., Lo Vio, A., Trifiro, A., Gherardi, S., 1992. Composition of Italian Kiwi (Actinidia chinensis) Puree. Journal of Agricultural and Food Chemistry, 40, 594–598.
  • Cervenka, L., 2008 Adsorption of Moisture on Dried Juniper Berries (Juniperus communis L.) at Various Temperatures and Properties of Sorbed Water. Journal of Food and Nutrition Research, 47(3), 131–138.
  • Ciurzynska, A., Piotrowski, D., Lenart, A., Lukasik, P., 2012. Sorption Properties of Vacuum-Dried Strawberries. Drying Technology, 30, 850–858.
  • Chinachoti, P., Steinberg, M.P., 1984. Interaction of Sucrose with Starch during Dehydration as shown by Water Sorption, Journal of Food Science, 49(6), 1604-1608.
  • Esti, M., Messia, M.C., Bertocchi, P., Sinesio, F., Moneta, E., Nicotra, A., et al., 1998. Chemical Compounds and Sensory Assessment of Kiwifruit (Actinidia chinensis (Planch) var. chinensis): Electrochemical and Multivariate Analyses. Food Chemistry, 61, 293–300.
  • Falade, K.O., Aworh, O.C., 2004a. Adsorption Isotherms of Osmo-Oven Dried African Star Apple (Chrysophyllum albidum) and African Mango (Irvingia gabonensis) Slices. European Food Research and Technology, 218(3), 278–83.
  • Falade, K.O., Olukini, I., Adegoke, G.O., 2004b. Adsorption Isotherm and Heat of Sorption of Osmotically Pretreated and Air-Dried Pineapple Slices. European Food Research and Technology, 218(6), 540–3.
  • Greenspan, L., 1977. Humidity Fixed Points of Binary Saturated Aqueous Solutions. Journal of Research of the National Bureau of Standards - A. Physics and Chemistry, 81A(1), 89-96.
  • Kaya, A., Aydın, O., Kolayli, S., 2010. Effect of Different Drying Conditions on the Vitamin C (Ascorbic Acid) Content of Hayward Kiwifruits (Actinidia delicosa Planch). Food and Bioproducts Processing, 88(C2-3), 165-173.
  • Kaymak-Ertekin, F., Gedik, A., 2004. Sorption Isotherms and Isosteric Heat of Sorption for Grapes, Apricots, Apples and Potatoes. Lebensmittel-Wissenschaft und –Technologie, 37(4), 429-438.
  • Kingsly, A.R.P., Ileleji, K.E., 2009. Sorption Isotherm of Corn Distillers Dried Grains with Solubles (DDGS) and Its Prediction using Chemical Composition. Food Chemistry, 116 (4), 939–946.
  • Klewicki, R., Konopacka, D., Uczciwek, M., Irzyniec, Z., Piasecka, E., Bonazzi, C., 2009. Sorption Isotherms for Osmo-Convectively-Dried and Osmo-Freeze-Dried Apple, Sour Cherry, and Blackcurrant. The Journal of Horticultural Science and Biotechnology, 84(6), 75-79.
  • Koroş, B. 2007. Geleneksel Türk Gıdalarının Adsorpsiyon İzotermlerinin Belirlenmesi. Yüksek Lisans Tezi. Ankara University, Türkiye.
  • Kubal, C., Mazı, B.G., Bostan, S.Z., 2017. Ordu’da (Türkiye) Yetiştirilen ‘Hayward’ Kivi Çeşidinin Önemli Kimyasal Bileşenleri ve Fiziksel Özellikleri. Nevşehir Bilim ve Teknoloji Dergisi, 6, 280-296.
  • Labuza, T.P., Altunakar, B., 2008. Water Activity Prediction and Moisture Sorption Isotherms. G.V. Barbosa‐Canovas, A.J. Fontana Jr, S.J. Schmidt, T.P. Labuza (Edt.). Water Activity in Foods: Fundamentals and Applications. (pp. 109-154). Blackwell Publishing and IFT Press.
  • Labuza, T.P., Kaanane, A., Chen, J.Y., 1985. Effect of Temperature on the Moisture Sorption Isotherms and Water Activity Shift of Two Dehydrated Foods. Journal of Food Science, 50 (2), 385-391.
  • Lim, L.T., Tang, J.M., He, J.S., 1995. Moisture Sorption Characteristics of Freeze-Dried Blueberries. Journal of Food Science, 60(4), 810-814.
  • Lomauro, C.J., Bakshi, A.S., Labuza, T.P., 1985. Evaluation of Food Moisture Sorption Isotherm Equations. Part I: Fruit, Vegetable and Meat Products. Lebensmittel-Wissenschaft and Technologie, 18(2), 111-117.
  • Maskan, M., 2001. Kinetics of Colour Change of Kiwifruits during Hot Air and Microwave Drying. Journal of Food Engineering, 48(2), 169-175.
  • Mitrevski, V., Lutovska, M., Mijakovski, V., Pavkov, I.S., Babic, M.M., Radojcin, M.T., 2015. Adsorption Isotherms of Pear at Several Temperatures. Thermal Science, 19(3), 1119-1129.
  • Sahin, S., Sumnu, S.G., 2006. Water Activity and Sorption Properties of Foods. S. Sahin, S.G. Sumnu (Edt.), Physical Properties of Foods (pp. 193–228). New York: Springer Science+BusinessMedia.
  • Tatar, E., Cengiz, A., Kahyaoglu, T., 2014. Effect of Hemicellulose as a Coating Material on Water Sorption Thermodynamics of the Microencapsulated Fish Oil and Artificial Neural Network (ANN) Modeling of Isotherms. Food and Bioprocess Technology, 7, 2793–2802.
  • Thalerngnawachart, S., Duangmal, K., 2016. Influence of Humectants on the Drying Kinetics, Water Mobility, and Moisture Sorption Isotherm of Osmosed Air-Dried Papaya. Drying Technology, 34(5), 574-583.
  • Timmermann, E. O., 2003. Multilayer Sorption Parameters: BET or GAB Values? Colloids and Surfaces A-Physicochemical and Engineering Aspects, 220(1-3), 235-260.
  • Udomkun, P., Argyropoulos, D., Nagle, M., Mahayothee, B., Müller, J., 2015. Sorption Behaviour of Papayas as Affected by Compositional and Structural Alterations from Osmotic Pretreatment and Drying. Journal of Food Engineering, 157, 14-23.
  • Van Campen, L., Amidon, G.L., Zografi, G., 1983.Moisture Sorption Kinetics for Water-Soluble Substances I: Theoretical Considerations of Heat Transport Control. Journal of Pharmaceutical Sciences, 72(12), 1381-1388.
  • Vega-Galvez, A., Palacios, M., Lemus-Mondaca, R., Passaro, C., 2008. Moisture Sorption Isotherms and Isosteric Heat Determination in Chilean Papaya (Vasconcellea pubescens). Quimica Nova, 31(6), 1417-1421.
  • Wang, H., Cao, G., Prior, R.L., 1996. Total Antioxidant Capacity of Fruits. Journal of Agricultural and Food Chemistry, 44, 701-705.
  • Wolf, W., Spiess, W.E.L., Jung, G., 1985. Properties of Water in Foods in Relation to Food Quality and Stability. D. Stimatos, J.L. Multon (Edt.). Standardization of Isotherm Measurement pp. 661–679. Dordrecht: Martinus Nijhoff Publishers.
  • Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S., De Meulenaer, B., 2015. Moisture Sorption Isotherms and Thermodynamic Properties of Whole Black Peppercorns (Piper nigrum L.). LWT-Food Science and Technology, 64(1), 177-188.
  • Young, J.F., 1967. Humidity Control in the Laboratory Using Salt Solutions-A Review. Journal of Applied Chemistry, 17, 241-245.

FARKLI KURUTMA YÖNTEMLERİ İLE KURUTULAN KİVİ MEYVESİNİN ADSORPSİYON İZOTERMLERİ

Year 2019, Volume: 7 Issue: 1, 167 - 174, 25.03.2019
https://doi.org/10.21923/jesd.487962

Abstract

Bu
çalışmanın amacı, sıcak hava, vakum ve dondurarak kurutma yöntemleriyle
kurutulmuş kivi meyvesinin nem adsorpsiyon izotermlerini belirlemektir.
Kurutulmuş kivi meyvesinin denge nem içerikleri (EMC), standart gravimetrik
yöntem kullanılarak, iki farklı sıcaklıkta (25 ve 45°C), 0.112 ile 0.936 su
aktivitesi aralığında elde edilmiştir. Kurutulmuş kivi meyvelerinin adsorpsiyon
izotermleri artan sıcaklık ile azalmış ve tip III davranış sergilemiştir.
Deneysel adsorpsiyon izoterm verisini tanımlamak için altı farklı izoterm
denklemi (GAB (Guggenheim-Anderson-de Boer), BET (Brunauer-Emmett-Teller),
Oswin, Henderson, Halsey ve Peleg) kullanılmıştır. Vakumla kurutulmuş örnekler
için 25 ve 45 °C'de elde edilen adsorpsiyon verileri ve sıcak hava ve
dondurarak kurutulmuş örnekler için 45 ° C'de elde edilen veriler en iyi Peleg
denklemiyle temsil edilmiştir. Sıcak hava ve dondurarak kurutma ile kurutulmuş
olan örnekler için, GAB eşitliği, 25°C’de elde edilen deneysel verileri en iyi
şekilde tanımlamıştır.

References

  • Akoy, E.O.M., von Hörsten, D., 2013. Moisture Sorption Isotherms of Mango Slices. International Journal of Agricultural and Food Science, 3(4), 164-170.
  • Al-Muhtaseb, A.H., McMinn, W.A.M., Magee, T.R.A., 2002. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food and Bioproducts Processing, 80(C2), 118-128.
  • Andrade, R.D., Lemus, R., Perez, C.E., 2011. Models of Sorption Isotherms for Food: Uses and Limitations. Vitae- Revista de la Facultad de Quimica Farmaceutica, 18(3), 324-333.
  • Ayranci, E., Ayranci, G., Dogantan, Z., 1990. Moisture Sorption Isotherms of Dried Apricot, Fig and Raisin at 20 °C and 36 °C. Journal of Food Science, 55 (6), 1591-1593.
  • Brunauer, S., Deming, L.S., Deming, W.E., Troller, E., 1940. On the Theory of Van der Waals Adsorption of Gases, Journal of American Chemical Society, 62, 1723–1732.
  • Caballero-Ceron, C., Serment-Moreno, V., Velazquez, G., Torres, J.A., Welti-Chanes, J., 2018. Hygroscopic Properties and Glass Transition of Dehydrated Mango, Apple And Banana. Journal of Food Science and Technology-Mysore, 55(2), 540-549.
  • Castaldo, D., Lo Vio, A., Trifiro, A., Gherardi, S., 1992. Composition of Italian Kiwi (Actinidia chinensis) Puree. Journal of Agricultural and Food Chemistry, 40, 594–598.
  • Cervenka, L., 2008 Adsorption of Moisture on Dried Juniper Berries (Juniperus communis L.) at Various Temperatures and Properties of Sorbed Water. Journal of Food and Nutrition Research, 47(3), 131–138.
  • Ciurzynska, A., Piotrowski, D., Lenart, A., Lukasik, P., 2012. Sorption Properties of Vacuum-Dried Strawberries. Drying Technology, 30, 850–858.
  • Chinachoti, P., Steinberg, M.P., 1984. Interaction of Sucrose with Starch during Dehydration as shown by Water Sorption, Journal of Food Science, 49(6), 1604-1608.
  • Esti, M., Messia, M.C., Bertocchi, P., Sinesio, F., Moneta, E., Nicotra, A., et al., 1998. Chemical Compounds and Sensory Assessment of Kiwifruit (Actinidia chinensis (Planch) var. chinensis): Electrochemical and Multivariate Analyses. Food Chemistry, 61, 293–300.
  • Falade, K.O., Aworh, O.C., 2004a. Adsorption Isotherms of Osmo-Oven Dried African Star Apple (Chrysophyllum albidum) and African Mango (Irvingia gabonensis) Slices. European Food Research and Technology, 218(3), 278–83.
  • Falade, K.O., Olukini, I., Adegoke, G.O., 2004b. Adsorption Isotherm and Heat of Sorption of Osmotically Pretreated and Air-Dried Pineapple Slices. European Food Research and Technology, 218(6), 540–3.
  • Greenspan, L., 1977. Humidity Fixed Points of Binary Saturated Aqueous Solutions. Journal of Research of the National Bureau of Standards - A. Physics and Chemistry, 81A(1), 89-96.
  • Kaya, A., Aydın, O., Kolayli, S., 2010. Effect of Different Drying Conditions on the Vitamin C (Ascorbic Acid) Content of Hayward Kiwifruits (Actinidia delicosa Planch). Food and Bioproducts Processing, 88(C2-3), 165-173.
  • Kaymak-Ertekin, F., Gedik, A., 2004. Sorption Isotherms and Isosteric Heat of Sorption for Grapes, Apricots, Apples and Potatoes. Lebensmittel-Wissenschaft und –Technologie, 37(4), 429-438.
  • Kingsly, A.R.P., Ileleji, K.E., 2009. Sorption Isotherm of Corn Distillers Dried Grains with Solubles (DDGS) and Its Prediction using Chemical Composition. Food Chemistry, 116 (4), 939–946.
  • Klewicki, R., Konopacka, D., Uczciwek, M., Irzyniec, Z., Piasecka, E., Bonazzi, C., 2009. Sorption Isotherms for Osmo-Convectively-Dried and Osmo-Freeze-Dried Apple, Sour Cherry, and Blackcurrant. The Journal of Horticultural Science and Biotechnology, 84(6), 75-79.
  • Koroş, B. 2007. Geleneksel Türk Gıdalarının Adsorpsiyon İzotermlerinin Belirlenmesi. Yüksek Lisans Tezi. Ankara University, Türkiye.
  • Kubal, C., Mazı, B.G., Bostan, S.Z., 2017. Ordu’da (Türkiye) Yetiştirilen ‘Hayward’ Kivi Çeşidinin Önemli Kimyasal Bileşenleri ve Fiziksel Özellikleri. Nevşehir Bilim ve Teknoloji Dergisi, 6, 280-296.
  • Labuza, T.P., Altunakar, B., 2008. Water Activity Prediction and Moisture Sorption Isotherms. G.V. Barbosa‐Canovas, A.J. Fontana Jr, S.J. Schmidt, T.P. Labuza (Edt.). Water Activity in Foods: Fundamentals and Applications. (pp. 109-154). Blackwell Publishing and IFT Press.
  • Labuza, T.P., Kaanane, A., Chen, J.Y., 1985. Effect of Temperature on the Moisture Sorption Isotherms and Water Activity Shift of Two Dehydrated Foods. Journal of Food Science, 50 (2), 385-391.
  • Lim, L.T., Tang, J.M., He, J.S., 1995. Moisture Sorption Characteristics of Freeze-Dried Blueberries. Journal of Food Science, 60(4), 810-814.
  • Lomauro, C.J., Bakshi, A.S., Labuza, T.P., 1985. Evaluation of Food Moisture Sorption Isotherm Equations. Part I: Fruit, Vegetable and Meat Products. Lebensmittel-Wissenschaft and Technologie, 18(2), 111-117.
  • Maskan, M., 2001. Kinetics of Colour Change of Kiwifruits during Hot Air and Microwave Drying. Journal of Food Engineering, 48(2), 169-175.
  • Mitrevski, V., Lutovska, M., Mijakovski, V., Pavkov, I.S., Babic, M.M., Radojcin, M.T., 2015. Adsorption Isotherms of Pear at Several Temperatures. Thermal Science, 19(3), 1119-1129.
  • Sahin, S., Sumnu, S.G., 2006. Water Activity and Sorption Properties of Foods. S. Sahin, S.G. Sumnu (Edt.), Physical Properties of Foods (pp. 193–228). New York: Springer Science+BusinessMedia.
  • Tatar, E., Cengiz, A., Kahyaoglu, T., 2014. Effect of Hemicellulose as a Coating Material on Water Sorption Thermodynamics of the Microencapsulated Fish Oil and Artificial Neural Network (ANN) Modeling of Isotherms. Food and Bioprocess Technology, 7, 2793–2802.
  • Thalerngnawachart, S., Duangmal, K., 2016. Influence of Humectants on the Drying Kinetics, Water Mobility, and Moisture Sorption Isotherm of Osmosed Air-Dried Papaya. Drying Technology, 34(5), 574-583.
  • Timmermann, E. O., 2003. Multilayer Sorption Parameters: BET or GAB Values? Colloids and Surfaces A-Physicochemical and Engineering Aspects, 220(1-3), 235-260.
  • Udomkun, P., Argyropoulos, D., Nagle, M., Mahayothee, B., Müller, J., 2015. Sorption Behaviour of Papayas as Affected by Compositional and Structural Alterations from Osmotic Pretreatment and Drying. Journal of Food Engineering, 157, 14-23.
  • Van Campen, L., Amidon, G.L., Zografi, G., 1983.Moisture Sorption Kinetics for Water-Soluble Substances I: Theoretical Considerations of Heat Transport Control. Journal of Pharmaceutical Sciences, 72(12), 1381-1388.
  • Vega-Galvez, A., Palacios, M., Lemus-Mondaca, R., Passaro, C., 2008. Moisture Sorption Isotherms and Isosteric Heat Determination in Chilean Papaya (Vasconcellea pubescens). Quimica Nova, 31(6), 1417-1421.
  • Wang, H., Cao, G., Prior, R.L., 1996. Total Antioxidant Capacity of Fruits. Journal of Agricultural and Food Chemistry, 44, 701-705.
  • Wolf, W., Spiess, W.E.L., Jung, G., 1985. Properties of Water in Foods in Relation to Food Quality and Stability. D. Stimatos, J.L. Multon (Edt.). Standardization of Isotherm Measurement pp. 661–679. Dordrecht: Martinus Nijhoff Publishers.
  • Yogendrarajah, P., Samapundo, S., Devlieghere, F., De Saeger, S., De Meulenaer, B., 2015. Moisture Sorption Isotherms and Thermodynamic Properties of Whole Black Peppercorns (Piper nigrum L.). LWT-Food Science and Technology, 64(1), 177-188.
  • Young, J.F., 1967. Humidity Control in the Laboratory Using Salt Solutions-A Review. Journal of Applied Chemistry, 17, 241-245.
There are 37 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Ayşe Kızmaz This is me 0000-0001-9949-6162

Duygu Altıok 0000-0002-8503-2145

Işıl Barutçu Mazı 0000-0002-5324-8451

Publication Date March 25, 2019
Submission Date November 26, 2018
Acceptance Date January 15, 2019
Published in Issue Year 2019 Volume: 7 Issue: 1

Cite

APA Kızmaz, A., Altıok, D., & Barutçu Mazı, I. (2019). ADSORPTION ISOTHERMS OF KIWIFRUIT DRIED BY DIFFERENT DRYING METHODS. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(1), 167-174. https://doi.org/10.21923/jesd.487962