Research Article
BibTex RIS Cite

COST EFFICIENT PROTOTYPING OF MICROSTRIP PATCH ANTENNA USING 3D PRINTING TECHNOLOGY

Year 2019, Volume: 7 Issue: 3, 473 - 479, 15.09.2019
https://doi.org/10.21923/jesd.520455

Abstract

Microstrip patch antenna
is one of the commonly used antenna model in today’s technology. Due to their
planar structure, microstirp antenna are being used in many wireless
communication application. Commonly during the prototyping process of these
stages, either methods with low cost that has low accuracy, and have hazardous
effect both on environment and human health such as melting copper with
hydrochloric acid and perhydrol or methods with lesser prototyping error at the
expanse of high cost values like mechanic milling or laser cutting are being
used. 3D printing technology is one of the recent innovation for fast, accurate
and low cost prototyping. Herein, a low cost, accurate and environmental
friendly prototyping method by using Fused Deposition Modelling (FDM), is
presented instead of the traditionally prototyping methods such as melting
copper with acid, milling and laser cutting. Thus, firstly a typical microstrip
patch antenna design had been modelled in 3D electromagnetic simulation CST.
After the analyst stage of the antenna models performance criteria’s, the
antenna design with optimally selected parameters had been prototyped with 3D
printer for comparison of measured and simulated results. The prototyped
antenna model achieves a return loss characteristics of -15dB and Gain 7.1 dBi
at 2.45 GHz. As it can be seen from the obtained results, with the proposed 3D
printing technology for the prototyping of planar antenna or similar circuit
stages it is possible to realize these designs with a fast, environmental
friendly, non-hazardous, reachable, cost efficient and high accuracy method. 

References

  • A-info, lb8180, 0.8-18 Ghz broad band horn antenna available at: http://www.ainfoinc.com/en/p_ant_h_brd.asp
  • Arbaoui Y., Laur V., Maalouf A., Queffelec P., Passerieux D., Delias A., Blondy P., Full 3-D printed microwave termination: A simple and low-cost solution, IEEE Trans Microwave Theory Tech 64 (2015), 271–278.
  • Ari O., Coşkun Ö., "Biyomedikal Uygulamalar İçin Ultra Geniş Bant UWB Anten Tasarımı Ve Analizi", Süleyman Demirel Üniversitesi, Teknik Bilimler Dergisi, cilt.1, ss.1-4, 2012.
  • Ardıc S. B., Kaya A., Coskun Ö. "Slot-Loaded Microstrip Antenna Design of Transceiver for Wireless Data Communication in ISM Band" Beykent University, Journal of Science and Technology, (2008), 293-314.
  • Auria M., Otter W.J., Hazell J., Gillatt B.T.W., Long-Collins C., Ridler N.M., Lucyszyn S., 3-D printed metal-pipe rectangular waveguides, IEEE Trans Compon Packag Manuf Technol 5 (2015), 1339–1349.
  • Barton J.H., Garcia C.R., Berry E.A., Salas R., Rumpf R.C., 3- D printed all-dielectric frequency selective surface with large bandwidth and field of view, IEEE Trans Antennas Propag 63 (2015), 1032–1039.
  • Belen MA, Ultra Geniş Band Uygulamaları için Düzlemsel Hat Beslemeli Mikroşerit Anten Tasarımı, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, (2018).
  • Belen MA, Mahouti P. Design and realization of quasi Yagi antenna for indoor application with 3D printing technology. Microw Opt Technol Lett. (2018); 60:2177–2181.
  • Belen MA, Güneş F, Mahouti P, Belen A, "UWB Gain Enhancement of Horn Antennas Using Miniaturized Frequency Selective Surface", Applied Computational Electromagnetics Society Journal, (2018), 997-1002.
  • Butscher A., Bohner M., Doebelin N., Hofmann S., Müller R., New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes, Acta Biomaterialia, 2013, 9149-9158s, ISSN 1742-7061,
  • CEL Robox® Micro üretim platformu, http://cel-uk.com/3d-printer/rbx01-480.html. Available on [21.11.2018]
  • Chieh J. C. S., Dick B., Loui S., Rockway J. D., Development of a Ku-band corrugated conical horn using 3-D print technology, IEEE Antennas Wireless Propag Lett 13 (2014), 201–204.
  • Garcia C. R., Rumph R. C., Tsang H. H., Barton J. H., Effects of extreme surface roughness on 3D printed horn antenna, Electron Lett 49 (2013), 734–736.
  • Ghazali M.I.M., Karuppuswami S., Kaur, A, ‘3-D printed air substrates for the design and fabrication of RF components’, Trans. Compon. Packag. Manuf. Technol., (2017), 982–989, doi: 10.1109/TCPMT.2017.2686706
  • Görgün A.R., Coşkun Ö., Kaya İ., "Karbon Nanatüp Malzeme İle Tasarlanan Heliks Antenlerin Performans Parametrelerinin İncelenmesi", Teknik Bilimler Dergisi, (2012).
  • Jun S., Sanz-Izquierdo B., Heirons J., ‘Circular polarised antenna fabricated with low-cost 3D and inkjet printing equipment’, Electron. Lett., 2017, 370–371, doi: 10.1049/el.2016.4605
  • Junping S., Wei-Jiang Z., Xinrong L., Xiuhan J., 75-500 MHz quadruple-ridged horn antenna with dual polarisation, Electron Lett., (2015), 597–598.
  • Khan M. A. H., S. Ali, J. Bae, and C. H., Lee Inkjet Printed Transparent And Bendable Patch Antenna Based On Polydimethylsiloxane And Indium Tin Oxide Nanoparticles, Microwave And Optical Technology Letters, (2016) 2884-2887, Malaeb Z, Hachem H, Tourbah A, Maalouf T, Zarwi NE, Hamzeh F, 3d Concrete Printing: Machine and Mix Design. International Journal of Mechanical Engineering and Technology, (2015), 14–22.
  • Moscato S., Bahr R., Le T., Pasian M., Bozzi M., Perregrini L., Tentzeris M.M., Additive manufacturing of 3D substrate integrated waveguide components, IET Electron Lett 51 (2015), 1426–1428.
  • PLA Filament - Polar White RBX-PLA-WH002, http://cel-uk.com/3d-printer/filament/pla/rbx-pla-wh002.html. (Avaliable on 27.01.2019)
  • Sage G.P. , 3D printed waveguide slot array antennas, IEEE Access 4 (2016), 1258–1265.
  • Satyanarayanaa B., Prakash KJ, Component replication using 3D printing technology, Procedia Materials Science, (2015), 263 – 269.
  • Sivadasan, Use of fused deposition modeling process in investment precision casting - a viable rapid tooling, International Journal of Conceptions on Mechanical and Civil Engineering, (2013).
  • Toy Y. C., Mahouti P., Güneş F., Belen MA, "Design and manufactering of an X-band horn antenna using 3-D printing technology," 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, (2017), 195-198. doi: 10.1109/RAST.2017.8002988
  • Venu Madhav CH., Kesav R. Sri Nidhi Hrushi, Y. Shivraj Narayan (2016), Importance and Utilization of 3D Printing in Various Applications, International Journal of Modern Engineering Research (IJMER), pp. 24–29.
  • Wang K, Ho CC, Zhang C, Wang B, A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications, Engineering, (2017), 653-662, ISSN 2095-8099,
  • Wang S., Zhu L., Wu W.: ‘3-D printed inhomogeneous substrate and superstrate for application in dual-band and dual-CP stacked patch antenna’, Trans. Antennas Propag., (2018), doi: 10.1109/ TAP.2018.2810330
  • Wu J., Kodi A., Kaya S., ‘Monopoles loaded with 3-D-printed dielectrics for future wireless IntraChip communications’, Trans. Antennas Propag., (2017), 6838–6846, doi: 10.1109/ TAP.2017.2758400.
  • Xu T., Zhao W., Zhu JM, Albanna MZ, Yoo JJ, Atala A, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology, Biomaterials, 2013, 130-139, ISSN 0142-9612,
  • Yagnik D, Fused deposition modeling - a rapid prototyping technique for product cycle time reduction cost effectively in aerospace applications, IOSR Journal of Mechanical and Civil Engineering, (2014), 62-68.
  • Yonn J., Fabrication And Measurement Of Modified Spiral-Patch Antenna for use as a Triple-Band (2.4ghz/ 5ghz) Antenna Microwave And Optical Technology Letters , (2006),1275-1278.
  • Zhang S. , Njoku C C., Whittow, W. G. and Vardaxoglou, J. C., Novel 3D printed synthetic dielectric substrates. Microw. Opt. Technol. Lett., (2015) 2344-2346. doi:10.1002/mop.29324
  • Zhang, S., Arya, R.K., Pandey, S., et al.: ‘3D-printed planar graded index lenses’, Microw. Antennas Propag., (2016), 1411–1419, doi: 10.1049/iet-map.2016.0013

3 BOYUTLU YAZICI TEKNOLOJİSİ İLE BİR MİKROŞERİT YAMA ANTENİN MALİYET ETKİN ÜRETİMİ

Year 2019, Volume: 7 Issue: 3, 473 - 479, 15.09.2019
https://doi.org/10.21923/jesd.520455

Abstract

Günümüz iletişim
sistemlerinde yaygın olarak kullanılan anten modellerinden biri mikroşerit yama
antendir. Mikroşerit yama antenler düzlemsel yapılara sahip olmaları nedeni ile
birçok kablosuz haberleşme uygulamasında kullanılmaktadırlar. Bu yapılar
genellikle düşük maliyetli olması için; düşük hassasiyetli, çevreye zararlı ve
sağlık riski taşıyan bakır eritme perhidrol tuz ruhu yöntemi veya maliyeti çok
daha yüksek, çevreye daha az zararlı ve daha düşük üretim hatası olan mekanik
kazıma veya lazer kesim tekniği ile üretilmektedir. Son yıllarda hızlı,
doğruluğu yüksek ve düşük maliyetli üretim işlemi için geliştirilen
yeniliklerden biri, 3 boyutlu (3B) yazıcı teknolojisidir. Bu çalışma
kapsamında, 3B yazıcı teknolojisinde en yaygın kullanılan tekniklerden biri
olan Eritilmiş Dökme Modelleme teknolojisi kullanılarak geleneksel bakır
eritme, kazıma veya lazer kesim üretim teknikleri yerine, maliyeti düşük,
hassasiyeti yüksek ve çevre dostu bir üretim tekniği sunulmuştur. Bu kapsamda tipik
bir mikroşerit yama anten modeli 3B elektromanyetik benzetim ortamı CST de
oluşturulmuştur. Tasarıma ait performans kriterleri incelendikten sonra uygun
tasarım modelinin 3B yazıcı teknolojisi ile üretimi gerçekleştirilip deneysel
sonuçlarının benzetim sonuçları ile kıyaslanması yapılmıştır. Üretilen anten
modelinin 2.45GHz frekansında geri dönüş kaybı -15 dB ve kazancı 7.1 dBi olarak
ölçülmüştür.  Böylelikle kullanımı ile
hızlı, çevre dostu, sağlığa tehdidi olmayan, ulaşılabilinir, maliyet etkin
hassasiyeti yüksek tasarımların gerçekleştirilebileceği görülmüştür.

References

  • A-info, lb8180, 0.8-18 Ghz broad band horn antenna available at: http://www.ainfoinc.com/en/p_ant_h_brd.asp
  • Arbaoui Y., Laur V., Maalouf A., Queffelec P., Passerieux D., Delias A., Blondy P., Full 3-D printed microwave termination: A simple and low-cost solution, IEEE Trans Microwave Theory Tech 64 (2015), 271–278.
  • Ari O., Coşkun Ö., "Biyomedikal Uygulamalar İçin Ultra Geniş Bant UWB Anten Tasarımı Ve Analizi", Süleyman Demirel Üniversitesi, Teknik Bilimler Dergisi, cilt.1, ss.1-4, 2012.
  • Ardıc S. B., Kaya A., Coskun Ö. "Slot-Loaded Microstrip Antenna Design of Transceiver for Wireless Data Communication in ISM Band" Beykent University, Journal of Science and Technology, (2008), 293-314.
  • Auria M., Otter W.J., Hazell J., Gillatt B.T.W., Long-Collins C., Ridler N.M., Lucyszyn S., 3-D printed metal-pipe rectangular waveguides, IEEE Trans Compon Packag Manuf Technol 5 (2015), 1339–1349.
  • Barton J.H., Garcia C.R., Berry E.A., Salas R., Rumpf R.C., 3- D printed all-dielectric frequency selective surface with large bandwidth and field of view, IEEE Trans Antennas Propag 63 (2015), 1032–1039.
  • Belen MA, Ultra Geniş Band Uygulamaları için Düzlemsel Hat Beslemeli Mikroşerit Anten Tasarımı, Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, (2018).
  • Belen MA, Mahouti P. Design and realization of quasi Yagi antenna for indoor application with 3D printing technology. Microw Opt Technol Lett. (2018); 60:2177–2181.
  • Belen MA, Güneş F, Mahouti P, Belen A, "UWB Gain Enhancement of Horn Antennas Using Miniaturized Frequency Selective Surface", Applied Computational Electromagnetics Society Journal, (2018), 997-1002.
  • Butscher A., Bohner M., Doebelin N., Hofmann S., Müller R., New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes, Acta Biomaterialia, 2013, 9149-9158s, ISSN 1742-7061,
  • CEL Robox® Micro üretim platformu, http://cel-uk.com/3d-printer/rbx01-480.html. Available on [21.11.2018]
  • Chieh J. C. S., Dick B., Loui S., Rockway J. D., Development of a Ku-band corrugated conical horn using 3-D print technology, IEEE Antennas Wireless Propag Lett 13 (2014), 201–204.
  • Garcia C. R., Rumph R. C., Tsang H. H., Barton J. H., Effects of extreme surface roughness on 3D printed horn antenna, Electron Lett 49 (2013), 734–736.
  • Ghazali M.I.M., Karuppuswami S., Kaur, A, ‘3-D printed air substrates for the design and fabrication of RF components’, Trans. Compon. Packag. Manuf. Technol., (2017), 982–989, doi: 10.1109/TCPMT.2017.2686706
  • Görgün A.R., Coşkun Ö., Kaya İ., "Karbon Nanatüp Malzeme İle Tasarlanan Heliks Antenlerin Performans Parametrelerinin İncelenmesi", Teknik Bilimler Dergisi, (2012).
  • Jun S., Sanz-Izquierdo B., Heirons J., ‘Circular polarised antenna fabricated with low-cost 3D and inkjet printing equipment’, Electron. Lett., 2017, 370–371, doi: 10.1049/el.2016.4605
  • Junping S., Wei-Jiang Z., Xinrong L., Xiuhan J., 75-500 MHz quadruple-ridged horn antenna with dual polarisation, Electron Lett., (2015), 597–598.
  • Khan M. A. H., S. Ali, J. Bae, and C. H., Lee Inkjet Printed Transparent And Bendable Patch Antenna Based On Polydimethylsiloxane And Indium Tin Oxide Nanoparticles, Microwave And Optical Technology Letters, (2016) 2884-2887, Malaeb Z, Hachem H, Tourbah A, Maalouf T, Zarwi NE, Hamzeh F, 3d Concrete Printing: Machine and Mix Design. International Journal of Mechanical Engineering and Technology, (2015), 14–22.
  • Moscato S., Bahr R., Le T., Pasian M., Bozzi M., Perregrini L., Tentzeris M.M., Additive manufacturing of 3D substrate integrated waveguide components, IET Electron Lett 51 (2015), 1426–1428.
  • PLA Filament - Polar White RBX-PLA-WH002, http://cel-uk.com/3d-printer/filament/pla/rbx-pla-wh002.html. (Avaliable on 27.01.2019)
  • Sage G.P. , 3D printed waveguide slot array antennas, IEEE Access 4 (2016), 1258–1265.
  • Satyanarayanaa B., Prakash KJ, Component replication using 3D printing technology, Procedia Materials Science, (2015), 263 – 269.
  • Sivadasan, Use of fused deposition modeling process in investment precision casting - a viable rapid tooling, International Journal of Conceptions on Mechanical and Civil Engineering, (2013).
  • Toy Y. C., Mahouti P., Güneş F., Belen MA, "Design and manufactering of an X-band horn antenna using 3-D printing technology," 2017 8th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, (2017), 195-198. doi: 10.1109/RAST.2017.8002988
  • Venu Madhav CH., Kesav R. Sri Nidhi Hrushi, Y. Shivraj Narayan (2016), Importance and Utilization of 3D Printing in Various Applications, International Journal of Modern Engineering Research (IJMER), pp. 24–29.
  • Wang K, Ho CC, Zhang C, Wang B, A Review on the 3D Printing of Functional Structures for Medical Phantoms and Regenerated Tissue and Organ Applications, Engineering, (2017), 653-662, ISSN 2095-8099,
  • Wang S., Zhu L., Wu W.: ‘3-D printed inhomogeneous substrate and superstrate for application in dual-band and dual-CP stacked patch antenna’, Trans. Antennas Propag., (2018), doi: 10.1109/ TAP.2018.2810330
  • Wu J., Kodi A., Kaya S., ‘Monopoles loaded with 3-D-printed dielectrics for future wireless IntraChip communications’, Trans. Antennas Propag., (2017), 6838–6846, doi: 10.1109/ TAP.2017.2758400.
  • Xu T., Zhao W., Zhu JM, Albanna MZ, Yoo JJ, Atala A, Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology, Biomaterials, 2013, 130-139, ISSN 0142-9612,
  • Yagnik D, Fused deposition modeling - a rapid prototyping technique for product cycle time reduction cost effectively in aerospace applications, IOSR Journal of Mechanical and Civil Engineering, (2014), 62-68.
  • Yonn J., Fabrication And Measurement Of Modified Spiral-Patch Antenna for use as a Triple-Band (2.4ghz/ 5ghz) Antenna Microwave And Optical Technology Letters , (2006),1275-1278.
  • Zhang S. , Njoku C C., Whittow, W. G. and Vardaxoglou, J. C., Novel 3D printed synthetic dielectric substrates. Microw. Opt. Technol. Lett., (2015) 2344-2346. doi:10.1002/mop.29324
  • Zhang, S., Arya, R.K., Pandey, S., et al.: ‘3D-printed planar graded index lenses’, Microw. Antennas Propag., (2016), 1411–1419, doi: 10.1049/iet-map.2016.0013
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Peyman Mahoutı 0000-0002-3351-4433

Publication Date September 15, 2019
Submission Date January 31, 2019
Acceptance Date February 25, 2019
Published in Issue Year 2019 Volume: 7 Issue: 3

Cite

APA Mahoutı, P. (2019). 3 BOYUTLU YAZICI TEKNOLOJİSİ İLE BİR MİKROŞERİT YAMA ANTENİN MALİYET ETKİN ÜRETİMİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 7(3), 473-479. https://doi.org/10.21923/jesd.520455