Research Article
BibTex RIS Cite

STATION KEEPING OF WIND DRIVEN STRATOSPHERIC BALLOON VIA PROPULSION UNIT

Year 2020, Volume: 8 Issue: 1, 252 - 261, 20.03.2020
https://doi.org/10.21923/jesd.397265

Abstract

One of the most difficult problems in stratospheric balloon’s design is to keep the balloon’s geographic coordinates. Stratospheric wind speeds vary significantly both daily and throughout the year. Wind drag acting on the balloon should be manipulated to control the horizontal coordinates (longitude and latitude degree) of the stratospheric balloons. In this paper, propulsion unit is applied to a wind driven stratospheric balloon to keep balloon’s coordinate over flight area. The simulation was applied to a zero-pressure high altitude balloon using actual wind profile for the first time to control the horizontal movement of the balloon. In addition, required thrust power and some parameters effects on it have been investigated. The results indicate that propulsion unit would be helpful to manipulate the horizontal motion of the balloon and to achieve keeping the balloon’s geographic location. 

References

  • Chen, L., Zhang, H., Duan, DP., 2014. Control System Design of a Multivectored Thrust Stratospheric Airship. Journal of Aerospace Engineering, 228, 2045-2054.
  • Colozza, A., 2003. Initial Feasibility Assessment of a High-Altitude Long Endurance Airship. NASA report: 14248.
  • Farley, R. E., 2005. Balloon ascent: 3-D Simulation Tool for the Ascent and Float of High Altitude Balloons in: AIAA 5th Aviation, Technology, Integration and Operation Conference, AIAA, Virginia.
  • Fesen, R., Brown, Y., 2015. A Method for Establishing a Station Keeping, Stratospheric Platform for Astronomical Research. Experimental Astronomy, 39, 475-493.
  • Fesen, R.A., 2006. A High Altitude Station Keeping Astronomical Platform. SPIE Astronomical Telescopes+Instrumentation, Orlando, Florida, United States.
  • Kayhan, Ö., Hastaoğlu, M. A., 2014. Modeling of Stratospheric Balloon Using Transport Phenomena and Gas Compress-Release System. Journal of Thermophysics and Heat Transfer, 28, 534-541.
  • Kayhan, Ö., Yücel, Ö., Hastaoğlu, M.A., 2016. Simulation and Control of Serviceable Stratospheric Balloons Traversing a Region via Transport Phenomena and PID. Aerospace Science and Technology, 53, 232-240.
  • Kayhan, Ö., 2018. A thermal Model to Investigate the Power Output of Solar Array for Stratospheric Balloons in Real Environment. Applied Thermal Engineering, 139, 113-120.
  • Kong1, C., Park, H., Lee1, K., Choi, W., 2012. A Study on Structural Design and Analysis of Composite Propeller Blade of Turboprop for High Efficiency and Light Weight, ECCM15 - 15th European Conference on Composite Materials, Venice, Italy.
  • Liu, Q., Wu, Z., Zhu, M., Xu, W.Q., 2014. A Comprehensive Numerical Model Investigating the Thermal – Dynamic Performance of Scientific Balloon. Advances in Space Research, 53, 325-328.
  • Sultana, H., Yerranagu, S., Veeranjaneyulu, K., 2015. Sizing and Sensivity Analysis of High Altitude Airship. International Journal of Emerging Technology and Advanced Engineering, 5, 139-144.
  • Wang, H., Song, B., L, Zuo., 2007. Effect of High Altitude Airship’s Attitude on Performance of Its Energy System. Journal of Aircraft, 44, 2077-2079.
  • Wynsberghe, E., Turak, A., 2016. Station-keeping of a High-Altitude Balloon with Electric Propulsion and Wireless Power Transmission: A concept study. Acta Astronautica, 128, 616–627.
  • Yang, X., Liu, D., 2017. Renewable Power System Simulation and Endurance Analysis for Stratospheric Airships. Renewable Energy, 113, 1070-1076.

RÜZGAR SÜRÜKLEMELİ STRATOSFERİK BALONUN İTME ÜNİTESİ İLE İSTASYON KORUMASI

Year 2020, Volume: 8 Issue: 1, 252 - 261, 20.03.2020
https://doi.org/10.21923/jesd.397265

Abstract

Stratosferik balon tasarımında en zorlu problemlerden birisi de balonun coğrafik koordinatlarının korunmasıdır. Stratosferik rüzgar hızları hem günlük hem de yıl boyunca önemli ölçüde değişir. Balon üzerinde etkisi olan rüzgar sürüklemesi stratosferik balonların yatay koordinatlarını (enlem ve boylam derecesi) kontrol etmek için manipüle edilmelidir. Bu makalede, itme ünitesi rüzgar sürüklemeli stratosferik balona balonun uçuş alanı üzerinde koordinatlarının korunması için uygulanmıştır. Simülasyon, rüzgar sürüklemeli sıfır basınçlı yüksek irtifalı balona balonun yatay hareketini kontrol etmek için gerçek rüzgar profili kullanılarak ilk kez uygulanmıştır. Buna ek olarak, gerekli itici güç ve bunun üzerindeki bazı parametrelerin etkileri araştırılmıştır. Elde edilen sonuçlar, uygulanan itme ünitesinin balonun yatay hareketini engelleyerek balonun coğrafik konumunun korunmasına yardımcı olabileceğini göstermiştir.

References

  • Chen, L., Zhang, H., Duan, DP., 2014. Control System Design of a Multivectored Thrust Stratospheric Airship. Journal of Aerospace Engineering, 228, 2045-2054.
  • Colozza, A., 2003. Initial Feasibility Assessment of a High-Altitude Long Endurance Airship. NASA report: 14248.
  • Farley, R. E., 2005. Balloon ascent: 3-D Simulation Tool for the Ascent and Float of High Altitude Balloons in: AIAA 5th Aviation, Technology, Integration and Operation Conference, AIAA, Virginia.
  • Fesen, R., Brown, Y., 2015. A Method for Establishing a Station Keeping, Stratospheric Platform for Astronomical Research. Experimental Astronomy, 39, 475-493.
  • Fesen, R.A., 2006. A High Altitude Station Keeping Astronomical Platform. SPIE Astronomical Telescopes+Instrumentation, Orlando, Florida, United States.
  • Kayhan, Ö., Hastaoğlu, M. A., 2014. Modeling of Stratospheric Balloon Using Transport Phenomena and Gas Compress-Release System. Journal of Thermophysics and Heat Transfer, 28, 534-541.
  • Kayhan, Ö., Yücel, Ö., Hastaoğlu, M.A., 2016. Simulation and Control of Serviceable Stratospheric Balloons Traversing a Region via Transport Phenomena and PID. Aerospace Science and Technology, 53, 232-240.
  • Kayhan, Ö., 2018. A thermal Model to Investigate the Power Output of Solar Array for Stratospheric Balloons in Real Environment. Applied Thermal Engineering, 139, 113-120.
  • Kong1, C., Park, H., Lee1, K., Choi, W., 2012. A Study on Structural Design and Analysis of Composite Propeller Blade of Turboprop for High Efficiency and Light Weight, ECCM15 - 15th European Conference on Composite Materials, Venice, Italy.
  • Liu, Q., Wu, Z., Zhu, M., Xu, W.Q., 2014. A Comprehensive Numerical Model Investigating the Thermal – Dynamic Performance of Scientific Balloon. Advances in Space Research, 53, 325-328.
  • Sultana, H., Yerranagu, S., Veeranjaneyulu, K., 2015. Sizing and Sensivity Analysis of High Altitude Airship. International Journal of Emerging Technology and Advanced Engineering, 5, 139-144.
  • Wang, H., Song, B., L, Zuo., 2007. Effect of High Altitude Airship’s Attitude on Performance of Its Energy System. Journal of Aircraft, 44, 2077-2079.
  • Wynsberghe, E., Turak, A., 2016. Station-keeping of a High-Altitude Balloon with Electric Propulsion and Wireless Power Transmission: A concept study. Acta Astronautica, 128, 616–627.
  • Yang, X., Liu, D., 2017. Renewable Power System Simulation and Endurance Analysis for Stratospheric Airships. Renewable Energy, 113, 1070-1076.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Araştırma Articlessi \ Research Articles
Authors

Öznur Kayhan 0000-0002-1447-2952

Publication Date March 20, 2020
Submission Date February 21, 2018
Acceptance Date October 30, 2019
Published in Issue Year 2020 Volume: 8 Issue: 1

Cite

APA Kayhan, Ö. (2020). STATION KEEPING OF WIND DRIVEN STRATOSPHERIC BALLOON VIA PROPULSION UNIT. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(1), 252-261. https://doi.org/10.21923/jesd.397265