Review
BibTex RIS Cite

THE BASIC CONCEPTS OF MICRO-MILLING PROCESS AND ITS REVIEW IN TERMS OF DISTINCTIVE PARAMETERS

Year 2020, Volume: 8 Issue: 2, 643 - 654, 25.06.2020
https://doi.org/10.21923/jesd.446078

Abstract

The micro-milling process is relating to the production of miniature parts, and it is one of the significant micromachining processes. The size of parts produced by micromachining is smaller than millimeters and in the range of a few microns. In the last years, the demand for needs to minimal parts in industries, such as biomedical, communication, and aerospace have been increased. To encounter this need, one of the proper solutions is the micro-milling process. In this study, a review of the micro-milling process was achieved in terms of the important common terms and some concepts. Terms like size effect, minimum chip thickness, and ploughing phenomenon were evaluated with respect to literature. These terms can be taken into account to distinguish a major difference between micro and macro cutting processes. In addition to, surface quality is an important required factor for machined parts. In this work also the surface roughness and burr formation mechanism were showed because they represent an inevitable result in the micro-cutting process. In addition to the micro-milling process have been assessed in terms of important factors used in determining the quality of workpieces such as surface quality, burr formation, and cutting forces. In conclusion, this study investigated the important parameters in the micro-milling process and provided general information to compare the micro-milling with conventional milling.  

References

  • Adams, D., P., Vasile, M., J., Benavides, G., A., Cambel, N., l, 2004. Micro milling of metal alloy with focused ion beam-fabricated tools. Journal of International Societies of Precision Engineering and Nanotechnology 25, 107–113.
  • Afazov, S.M., Zdebski, D., Ratchev, S.M., Segal, J., Liu, S., 2013. Effects of micro-milling conditions on the cutting forces and process stability. Journal of Materials Processing Technology 213, 671– 684, UK
  • Aramcharoen, A., Mativenga, P. T., Yang, S., Cooke, K. E., and Teer, D. G., 2008. Evaluation and selection of hard coatings for micro-milling of hardened tool steel. International Journal of Machine Tools and Manufacture, 48 (14) 1578–1584.UK
  • Aramcharoen, A., Mativenga, P., T., 2009. Size effect and tool geometry in micro-milling of tool steel. Precision Engineering 33, 402–407.
  • Aslantas, K., Hopa, H., E., Percin, M., Ucun, I., Çiçek, A., 2016. Cutting performance of nanocrystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy. Precision Engineering, http://dx.doi.org/10.1016/j.precisioneng. 2016.01.009
  • Aslantas, K., Hopa, H.E., Perçin, M., Ucun, I., Çiçek, A. 2016. Cutting performance of nanocrystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy. Precis. Eng., 45, (55–66).
  • Biermann, D., Steiner, M., Krebs, E. 2013. Investigation of Different Hard Coatings for Micro milling of Austenitic Stainless Steel. Procedia Cirp., 7, 246–251.
  • Bissacco, G., Hansen, H.N., and De Chiffre, L., 2006. Size Effects on Surface Generation in Micro Milling of Hardened Tool Steel. Annals of the CIRP, 55(1), 593-596.
  • Bouzakis, K.D., Michailidis, N., Skordaris, G., Bouzakis, E., Biermann, D., M’Saoubi, R. 2012. Cutting with coated tools: Coating technologies, characterization methods, and performance optimization. CIRP Ann., 61, 703–723
  • Budak, E., 2000. Improving productivity and part quality in milling of titanium-based impellers by chatter suppression and force control. Annals of CIRP 49, 31–36.
  • Bulgurcu, G., 2017. Seleciıon of Micromilling conditions for improved productivity and part quality. Graduate School of Engineering and Natural Sciences Sabancı University, M.Sc Thesis, 95p, Türkiy.
  • Campos, F.O., Mougo, A. L., Araujo, A. C., 2017. Study of the cutting forces on micro-milling of an aluminum alloy. J Braz. Soc. Mech. Sci. Eng. 39:1289–1296.
  • Chae, J., Park, S.S., Freiheit, T., 2006. Investigation of Micro-Cutting Operations. International Journal of Machine Tools and Manufacture,46, 313-332.
  • Dadgari, A., Huo, D., Swailes, D., 2018. Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V. Nanotechnology, and Precision Engineering, 218–225.
  • Delhaes, G.M.J., Beek, A., vanOstayen, R.A.J., Munnig Schmidt, R.H., 2009. The viscous driven aerostatic supported high-speed spindle. Tribol. Int. 42(11/12), pp 1550–1557, Netherlves
  • Dornfeld, D., Min, S., Takeuchi, Y., 2006, Recent Advances in Mechanical Micromachining. CIRP Annals–Manufacturing Technology, 55,745-768.
  • Dow, T., A., Miller, E., L., Garrard, K., 2004. Tool force and deflection compensation for small milling tools. Precision Engineering 28, 31–45.
  • E. Kussul, T. Baidyk, L. Ruiz-Huerta, A. Caballero-Ruiz, G. Velasco, L. Kasatkina, 1996. Micromechanical engineering: a basis of the low-cost manufacturing of mechanical microdevices using micro equipment. Journal of Micromechanics and Microengineering, 6 (10–425).
  • E. Kussul, T. Baidyk, L. Ruiz-Huerta, A. Caballero-Ruiz, G. Velasco, L. Kasatkina, 2002. Development of micro machine tool prototypes for micro-factories. Journal of Micromechanics and Microengineering 12, 795–812.
  • Fang, F., Z., Liu, H., Wu., Liu, X,.D., Y.C., Ng, S.T., 2003. Tool geometry study in micromachining. Journal of Micromechanics and Micro engineering 13 726–731.
  • Filiz, S., Conley, C.M., Wasserman, M.B., Özdoganlar, O.B., 2007. An Experimental Investigation of Micro Machinability of Copper 101 Using Tungsten Carbide Micro Endmill. International Journal of Machine Tools and Manufacture, 47, 1088-1100,USA
  • Furukawa, Y., Moronuki, N., 1988. Effect of material properties on ultra-precise cutting process. Annals of CIRP, 37 (1), 113–116
  • Gill, DD., Jr,. BJ., Ziegert, JC., Payne, SWT., Pathak, JP., 2004. Next-generation spindles for micro-milling. Report by Sandia NationalLaboratories
  • Gołabczak, A., Koziarski, T.,2005. Assessment method of cutting ability of CBN grinding wheels. International Journal of Machine Tools & Manufacture 45, 1256–1260
  • Grzesik, W., 2008. Advanced Machining Processes of Metallic Materials Theory, Modelling, and Applications. pp 478, Elsevier Science, Netherlands.
  • Hatipoğlu E. ve Budak E., 2014. Mikro Frezeleme İşleminde Kesme Parametrelerinin Yüzey ve Talaş Oluşumuna Etkisinin Deneysel Olarak İncelenmesi. 5.Ulusal Talaşlı İmalat Sempozyumu, Türkiye
  • Jokiel, Jr., B., Gill, D., D., Ziegert, J., C., Payne, S., W., T., Pathak, J., P., 2004. SAND 6445, Unlimited Release, Report
  • Karubea, S., Soutomeb, T., 2003. The effect of tool nose radius in ultrasonic vibration cutting of hard metal. International Journal of Machine Tools and Manufacture, V.43, Issue 13, (1375-1382).
  • Kim, B., Schmittdiel, M., C., Degertekin, F., L., Kurfess, T., R., 2004. Scanning grating micro interferometer for MEMS metrology. Journal of Manufacturing Science and Engineering 126, 807–812
  • Kim, D., H., Lee, P., Lee, S., W., 2014. Experimental Study on Machinability of Ti-6Al-4V in Micro End-Milling. Proceedings of the World Congress on Engineering 2014 Vol II, ISBN: 978-988-19253-5-0.
  • Kuram, E., 2017. Kesici Takım Bağlama Uzunluğunun Mikro Frezelemede Takım Aşınması, Kuvvetler ve Çapak Boyutu Üzerindeki Etkileri. Fen ve Mühendislik Dergisi, Cilt 19, Sayı 55, Türkiye
  • Lee, K., Dornfeld, D.A., 2005. Micro-Burr Formation and Minimization Through Process Control. Precision Engineering, 29, 246-252.
  • Lee, W.B., Cheung, C.F., 2001. A Dynamic Surface Topography Model for The Precision of Nano-Surface Generation in Ultra-Precision Machining. International Journal of Mechanical Sciences, 43, 961-991.
  • Li, H., Lai, X., Li, C., Feng, J., Ni, J., 2008. Modeling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-End-Milling. Journal of Micromechanical and Microengineering, 18(2), 1-12.
  • Li, W., Zhou, Z.X., Xiao, H., Zhang, B., 2015. Design and evaluation of a high-speed and precision micro spindle. Int. J. Adv. Manuf. Technol. Vol.78 (5), pp 997–1004, London
  • Liu, K., Li, X., P., Rahman, M., 2003. Characteristics of high-speed micro-cutting of tungsten carbide. Journal of Materials Processing Technology 140, 352–357.
  • Liu, X., DeVor, R. E., Kapoor, S. G., and Ehmann, K. F., 2004. The mechanics of machining at the microscale: assessment of the current state of the science. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 126 (4) 666–678.
  • Liu, X., Jun, M,.B., Devor, R., E., Kappor, S., G., 2004. Cutting Mechanisms and their Influence on Dynamic Forces, Vibrations and Stability in Micro-end Milling. Proceedings ASME International Mechanical Engineering Congress and Exposition. Anaheim California, 13–20.
  • Lucca, D., A., Rhorer, R,.L., Komanduri, R., 1991. Energy dissipation in the ultra-precision machining of copper. Annals of CIRP, 40, 559–562.
  • Luo, X., Cheng, K., Webb, D., 2005. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. Journal of Materials Processing Technology, Vol. 167, Issues 2-3, pp 515-528, UK.
  • Makki, H., Heinemann, R., Hinduja, S., Owodunni, O., 2009. Online Determination of Tool Run-Out and Wear Using Machine Vision and Image Processing Techniques. 5th Virtual Conference Innovative Production Machines and Systems, 6-17 July, (CD-ROM).
  • Mamedov A. ve Lazoğlu İ., 2012. Mikro Frezeleme için Mekanistik kuvvet Modeli. 3. Ulusal Tasarım İmalat ve Analiz Kongresi, 175-183, Türkiye.
  • Masuzawa, T., 2000. State of the Art of Micromachining. Annals of CIRP, 49(2): 473–488.
  • Masuzawa, T., and Tönshoff, H. K., 1997. Three-dimensional micromachining by machine tools. CIRP Annals - Manufacturing Technology, 46 (2) 621–628. Germany.
  • Moriwaki, T., Sugimura, N., Luan, S., 1993. Combined stress material flow and heat analysis of orthogonal micromachining of copper. Annals of CIRP 42,,75–78.
  • Oliaei, S., N., B., Karpat Y., 2015. Influence of tool wear on machining forces and tool deflections during micro-milling. Springer-Verlag, London. DOI 10.1007/s00170-015-7744-4
  • Onikura, H., Ohnishi, O., Take, Y., 2000. Fabrication of micro carbide tools by ultrasonic vibration grinding. Annals of CIRP 49.
  • Özel, T., Olleak, A., Thepsonthi, T., 2017. Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod. Eng. Res. Devel, 11: 435–444.
  • Perçin, M., Aslantaş, K., Ucun, İ., Çiçek, A., 2015. Mikro Frezeleme İşleminde Kesme Koşullarının Takım Aşınması ve Yüzey Pürüzlülüğü Üzerindeki Etkisi. 8. Müh. ve Teknoloji Sempozyumu, 14-15 Mayıs/Çankaya Üniversitesi/Ankara, s 45-50
  • Saedon, J., Norrdin N., A., Yahaya, M., A., Kasim, M., S., and Mohamad Nor, NH., 2016. Investigation of Cutting Edge Radius Effect in Macro-machining and Micro-machining. Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014), DOI 10.1007/978-981-10-0534-3_2, 17-26p.
  • Schaller, T., Bohn, L., Mayer, J., Schubert, K., 1999. Microstructure grooves with a width of less than 50 mm cut with ground hard metal micro end mills. Precision Engineering 23 229–235.
  • Schmitz, T., Couey, J., Marsh, E., Mauntler, N., Hughes, D., 2007. Runout Effects in Milling: Surface finish, Surface Location Error, and Stability. International Journal of Machine Tools and Manufacture, 47, 841–851
  • Schmitz, T., L., Davies, M., Kennedy, M., D.,2002. Tool point frequency response prediction for high-speed machining by RCSA. Journal of Manufacturing Science and Engineering, 123, 700–707.
  • Shaw, M.C., 1995. Precision finishing. Annals of CIRP 44 (1) 343– 348.
  • Shreyes, K.L., Melkote, N., 2006. Effect of Plastic Side flow on Surface Roughness in the Micro-Turning Process. International Journal of Machine Tools and Manufacture, 46, 1778–1785.
  • Son, S., M., Lim, H,.S., Ahn, J., H., 2005. Effects of the friction coefficient on the minimum cutting thickness in micro-cutting. International Journal of Machine Tools and Manufacture 45, 529–535.
  • Thepsonthi, T., Özel, T., 2012. Multi-objective process optimization for micro-end milling of Ti6Al4V titanium alloy. Int J. Adv Manuf Technol, 63:903–914
  • Thepsonthi, T., Özel, T., 2013. Experimental and finite element simulation-based investigations on micro-milling Ti-6Al-4V titanium alloy: Effect of CBN coating on tool wear. Journal of Materials Processing Technology, 213, 532-542
  • Ucun, I., Aslantas, K., Bedir, F. 2013. An experimental investigation of the effect of coating material on tool wear in micro-milling of Inconel 718 superalloy. Wear, 300, 8–19
  • Ucun, İ., Aslantaş, K., Bedir, F. 2010. İnconel 718 Süper Alaşımının İşlenmesinde Kaplanmış Mikro Takımların Aşınma Davranışları ve Performans Analizi. Makine Teknolojileri Elektronik Dergisi, Cilt: 7, No: 4, 47-55.
  • Venkatesh, V. C., Izman, S., 2007. Precision Engineering. pp 436, Tata McGraw-Hill, USA.
  • Venkatesh, V., Swain, N., Sırınıvas, G., Kumar, P. andBarshilia, H.C., 2016. Review on the machining characteristics and research prospects of conventional micro-scale machining operations. Materials and Manufacturing Process, 32(3), 235-262.
  • Vogler, M., P., Devor, R., E., Kapoor S., G., 2004. On the modeling and analysis of machining performance in micro end milling. Journal of Manufacturing Science and Engineering 126 (4) ,685–705.
  • Vogler, M.P., Liu, X., Kapoor, S., G., Devor, R., E., Ehmann, K., F., 2002. Development of mesoscale machine tool (mMT) systems. Society of Manufacturing Engineers MS n MS02-181 1–9.
  • Wan, Y., Change, K., Sun, S., 2013, An innovative method for surface defects prevention in micro milling and its implementation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Proc IMechE Part J: Engineering Tribology 227(12) 1347–1355.
  • Wang, Z., Kovvuria, V., Araujob, A., Baccic M., Hunga, W.N.P., Bukkapatnama, S.T.S., 2016. Built-up-edge effects on surface deterioration in micro-milling Processes. Journal of Manufacturing Processes 24, 321–327. Brazil.
  • Weule, H., Huntrup, V., Tritschle, H., 2001. Micro-Cutting of Steel to Meet New Requirements in Miniaturization. Annals of the CIRP, 50(1), 61-64.
  • Wu X, Li L, Zhao M, He N, 2015. Experimental investigation of specific cutting energy and surface quality based on negative effective rake angle in micro turning. Int J Adv Manuf Technol 82:1941–194
  • Wu, X., Li, L., He, N., 2017. Investigation on the burr formation mechanism in micro-cutting. Precision Engineering, 47, pp191–196.
  • Wu, T., 2012. Tooling Performance in Micro Milling: Modelling, Simulation, and Experimental Study. School of Engineering and Design, Brunel University, Doctorate Thesis, 229pp, England.
  • Y. Okazaki, N. Mishima, K. Ashida, 2004. Micro factory-concept, history, and developments. Journal of Manufacturing Science and Engineering 126, 837–844.
  • Y.B. Bang, K. Lee, S. Oh,2005. 5-Axis micro milling machine for machining micro parts. Int J Advanced Manufacturing Technology, 25: 888–894
  • Yuan, Z.J., Zhou, M., Dong, S., 1996. Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultra-Precision Machining. Journal of Materials Processing Technology, 62(4), 327–330.
  • Zareena, A., R., Veldhuis, S., C., 2012. Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. Journal of Materials Processing Technology, 212, 560-570
  • Zhan, z., Liang Li, Ning H. & Rabin Sh., 2014. An experimental study on grinding parameters for manufacturing PCD micro-milling tool. International Journal of Advanced Manufacturing Technology, V. 73, Issue 9, pp 1799–1806. London.
  • Zhang, X. , Ehmann, K., F., T., Wang, W., 2016. Cutting forces in micro-end-milling processes. International Journal of Machine Tools & Manufacture 107, 21–40, China
  • Zhou, Li, W., Xiao, Z.X., Zhang, H., B., 2015. Design and evaluation of a high-speed and precision micro spindle. Int. J. Adv. Manuf. Technol. Vol.78 (5), pp 997–1004, London.

MİKRO FREZELEME İŞLEMİNİN TEMEL KONSEPTİ VE ÖZGÜN PARAMETRELER AÇISINDAN GENEL DEĞERLENDİRMESİ

Year 2020, Volume: 8 Issue: 2, 643 - 654, 25.06.2020
https://doi.org/10.21923/jesd.446078

Abstract

Mikro frezeleme işlemi minyatür parçaların üretimi ile ilgilidir ve önemli mikro işleme proseslerinden biridir. Mikro işleme ile üretilen parçaların boyutları milimetreden daha küçük olup birkaç mikron mertebesindedir. Son yıllarda biyomedikal, iletişim ve havacılık gibi birçok endüstrilerde mini parçalara olan ihtiyaç artmıştır. Bu ihtiyacı karşılamak için en uygun çözümlerden biri mikro frezeleme prosesi ile üretim yöntemidir. Bu çalışmada, mikro frezeleme işlemi açısından öneme sahip yaygın terimler ve bazı kavramlar gözden geçirilmiştir. Boyut etkisi, minimum talaş kalınlığı ve kazınma fenomeni gibi terimler literatür ışığında incelenmiştir. Bu terimler, mikro ve makro kesme süreçleri arasındaki farkı göstermek için dikkate alınabilir. Çalışmada ayrıca işlenmiş parçaların kalitesini belirlemede kullanılan önemli faktörlerden; yüzey kalitesi, çapak oluşumu ve kesme kuvvetleri gibi parametreler açısından, mikro frezeleme işlemleri kritik edilmiştir. Sonuç olarak bu çalışma ile mikro frezeleme işlemindeki önemli parametreler incelenmiş ve mikro frezelemenin geleneksel frezeleme işlemiyle farkını ortaya koymak için genel bilgiler sunulmuştur.

References

  • Adams, D., P., Vasile, M., J., Benavides, G., A., Cambel, N., l, 2004. Micro milling of metal alloy with focused ion beam-fabricated tools. Journal of International Societies of Precision Engineering and Nanotechnology 25, 107–113.
  • Afazov, S.M., Zdebski, D., Ratchev, S.M., Segal, J., Liu, S., 2013. Effects of micro-milling conditions on the cutting forces and process stability. Journal of Materials Processing Technology 213, 671– 684, UK
  • Aramcharoen, A., Mativenga, P. T., Yang, S., Cooke, K. E., and Teer, D. G., 2008. Evaluation and selection of hard coatings for micro-milling of hardened tool steel. International Journal of Machine Tools and Manufacture, 48 (14) 1578–1584.UK
  • Aramcharoen, A., Mativenga, P., T., 2009. Size effect and tool geometry in micro-milling of tool steel. Precision Engineering 33, 402–407.
  • Aslantas, K., Hopa, H., E., Percin, M., Ucun, I., Çiçek, A., 2016. Cutting performance of nanocrystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy. Precision Engineering, http://dx.doi.org/10.1016/j.precisioneng. 2016.01.009
  • Aslantas, K., Hopa, H.E., Perçin, M., Ucun, I., Çiçek, A. 2016. Cutting performance of nanocrystalline diamond (NCD) coating in micro-milling of Ti6Al4V alloy. Precis. Eng., 45, (55–66).
  • Biermann, D., Steiner, M., Krebs, E. 2013. Investigation of Different Hard Coatings for Micro milling of Austenitic Stainless Steel. Procedia Cirp., 7, 246–251.
  • Bissacco, G., Hansen, H.N., and De Chiffre, L., 2006. Size Effects on Surface Generation in Micro Milling of Hardened Tool Steel. Annals of the CIRP, 55(1), 593-596.
  • Bouzakis, K.D., Michailidis, N., Skordaris, G., Bouzakis, E., Biermann, D., M’Saoubi, R. 2012. Cutting with coated tools: Coating technologies, characterization methods, and performance optimization. CIRP Ann., 61, 703–723
  • Budak, E., 2000. Improving productivity and part quality in milling of titanium-based impellers by chatter suppression and force control. Annals of CIRP 49, 31–36.
  • Bulgurcu, G., 2017. Seleciıon of Micromilling conditions for improved productivity and part quality. Graduate School of Engineering and Natural Sciences Sabancı University, M.Sc Thesis, 95p, Türkiy.
  • Campos, F.O., Mougo, A. L., Araujo, A. C., 2017. Study of the cutting forces on micro-milling of an aluminum alloy. J Braz. Soc. Mech. Sci. Eng. 39:1289–1296.
  • Chae, J., Park, S.S., Freiheit, T., 2006. Investigation of Micro-Cutting Operations. International Journal of Machine Tools and Manufacture,46, 313-332.
  • Dadgari, A., Huo, D., Swailes, D., 2018. Investigation on tool wear and tool life prediction in micro-milling of Ti-6Al-4V. Nanotechnology, and Precision Engineering, 218–225.
  • Delhaes, G.M.J., Beek, A., vanOstayen, R.A.J., Munnig Schmidt, R.H., 2009. The viscous driven aerostatic supported high-speed spindle. Tribol. Int. 42(11/12), pp 1550–1557, Netherlves
  • Dornfeld, D., Min, S., Takeuchi, Y., 2006, Recent Advances in Mechanical Micromachining. CIRP Annals–Manufacturing Technology, 55,745-768.
  • Dow, T., A., Miller, E., L., Garrard, K., 2004. Tool force and deflection compensation for small milling tools. Precision Engineering 28, 31–45.
  • E. Kussul, T. Baidyk, L. Ruiz-Huerta, A. Caballero-Ruiz, G. Velasco, L. Kasatkina, 1996. Micromechanical engineering: a basis of the low-cost manufacturing of mechanical microdevices using micro equipment. Journal of Micromechanics and Microengineering, 6 (10–425).
  • E. Kussul, T. Baidyk, L. Ruiz-Huerta, A. Caballero-Ruiz, G. Velasco, L. Kasatkina, 2002. Development of micro machine tool prototypes for micro-factories. Journal of Micromechanics and Microengineering 12, 795–812.
  • Fang, F., Z., Liu, H., Wu., Liu, X,.D., Y.C., Ng, S.T., 2003. Tool geometry study in micromachining. Journal of Micromechanics and Micro engineering 13 726–731.
  • Filiz, S., Conley, C.M., Wasserman, M.B., Özdoganlar, O.B., 2007. An Experimental Investigation of Micro Machinability of Copper 101 Using Tungsten Carbide Micro Endmill. International Journal of Machine Tools and Manufacture, 47, 1088-1100,USA
  • Furukawa, Y., Moronuki, N., 1988. Effect of material properties on ultra-precise cutting process. Annals of CIRP, 37 (1), 113–116
  • Gill, DD., Jr,. BJ., Ziegert, JC., Payne, SWT., Pathak, JP., 2004. Next-generation spindles for micro-milling. Report by Sandia NationalLaboratories
  • Gołabczak, A., Koziarski, T.,2005. Assessment method of cutting ability of CBN grinding wheels. International Journal of Machine Tools & Manufacture 45, 1256–1260
  • Grzesik, W., 2008. Advanced Machining Processes of Metallic Materials Theory, Modelling, and Applications. pp 478, Elsevier Science, Netherlands.
  • Hatipoğlu E. ve Budak E., 2014. Mikro Frezeleme İşleminde Kesme Parametrelerinin Yüzey ve Talaş Oluşumuna Etkisinin Deneysel Olarak İncelenmesi. 5.Ulusal Talaşlı İmalat Sempozyumu, Türkiye
  • Jokiel, Jr., B., Gill, D., D., Ziegert, J., C., Payne, S., W., T., Pathak, J., P., 2004. SAND 6445, Unlimited Release, Report
  • Karubea, S., Soutomeb, T., 2003. The effect of tool nose radius in ultrasonic vibration cutting of hard metal. International Journal of Machine Tools and Manufacture, V.43, Issue 13, (1375-1382).
  • Kim, B., Schmittdiel, M., C., Degertekin, F., L., Kurfess, T., R., 2004. Scanning grating micro interferometer for MEMS metrology. Journal of Manufacturing Science and Engineering 126, 807–812
  • Kim, D., H., Lee, P., Lee, S., W., 2014. Experimental Study on Machinability of Ti-6Al-4V in Micro End-Milling. Proceedings of the World Congress on Engineering 2014 Vol II, ISBN: 978-988-19253-5-0.
  • Kuram, E., 2017. Kesici Takım Bağlama Uzunluğunun Mikro Frezelemede Takım Aşınması, Kuvvetler ve Çapak Boyutu Üzerindeki Etkileri. Fen ve Mühendislik Dergisi, Cilt 19, Sayı 55, Türkiye
  • Lee, K., Dornfeld, D.A., 2005. Micro-Burr Formation and Minimization Through Process Control. Precision Engineering, 29, 246-252.
  • Lee, W.B., Cheung, C.F., 2001. A Dynamic Surface Topography Model for The Precision of Nano-Surface Generation in Ultra-Precision Machining. International Journal of Mechanical Sciences, 43, 961-991.
  • Li, H., Lai, X., Li, C., Feng, J., Ni, J., 2008. Modeling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-End-Milling. Journal of Micromechanical and Microengineering, 18(2), 1-12.
  • Li, W., Zhou, Z.X., Xiao, H., Zhang, B., 2015. Design and evaluation of a high-speed and precision micro spindle. Int. J. Adv. Manuf. Technol. Vol.78 (5), pp 997–1004, London
  • Liu, K., Li, X., P., Rahman, M., 2003. Characteristics of high-speed micro-cutting of tungsten carbide. Journal of Materials Processing Technology 140, 352–357.
  • Liu, X., DeVor, R. E., Kapoor, S. G., and Ehmann, K. F., 2004. The mechanics of machining at the microscale: assessment of the current state of the science. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 126 (4) 666–678.
  • Liu, X., Jun, M,.B., Devor, R., E., Kappor, S., G., 2004. Cutting Mechanisms and their Influence on Dynamic Forces, Vibrations and Stability in Micro-end Milling. Proceedings ASME International Mechanical Engineering Congress and Exposition. Anaheim California, 13–20.
  • Lucca, D., A., Rhorer, R,.L., Komanduri, R., 1991. Energy dissipation in the ultra-precision machining of copper. Annals of CIRP, 40, 559–562.
  • Luo, X., Cheng, K., Webb, D., 2005. Design of ultraprecision machine tools with applications to manufacture of miniature and micro components. Journal of Materials Processing Technology, Vol. 167, Issues 2-3, pp 515-528, UK.
  • Makki, H., Heinemann, R., Hinduja, S., Owodunni, O., 2009. Online Determination of Tool Run-Out and Wear Using Machine Vision and Image Processing Techniques. 5th Virtual Conference Innovative Production Machines and Systems, 6-17 July, (CD-ROM).
  • Mamedov A. ve Lazoğlu İ., 2012. Mikro Frezeleme için Mekanistik kuvvet Modeli. 3. Ulusal Tasarım İmalat ve Analiz Kongresi, 175-183, Türkiye.
  • Masuzawa, T., 2000. State of the Art of Micromachining. Annals of CIRP, 49(2): 473–488.
  • Masuzawa, T., and Tönshoff, H. K., 1997. Three-dimensional micromachining by machine tools. CIRP Annals - Manufacturing Technology, 46 (2) 621–628. Germany.
  • Moriwaki, T., Sugimura, N., Luan, S., 1993. Combined stress material flow and heat analysis of orthogonal micromachining of copper. Annals of CIRP 42,,75–78.
  • Oliaei, S., N., B., Karpat Y., 2015. Influence of tool wear on machining forces and tool deflections during micro-milling. Springer-Verlag, London. DOI 10.1007/s00170-015-7744-4
  • Onikura, H., Ohnishi, O., Take, Y., 2000. Fabrication of micro carbide tools by ultrasonic vibration grinding. Annals of CIRP 49.
  • Özel, T., Olleak, A., Thepsonthi, T., 2017. Micro milling of titanium alloy Ti-6Al-4V: 3-D finite element modeling for prediction of chip flow and burr formation. Prod. Eng. Res. Devel, 11: 435–444.
  • Perçin, M., Aslantaş, K., Ucun, İ., Çiçek, A., 2015. Mikro Frezeleme İşleminde Kesme Koşullarının Takım Aşınması ve Yüzey Pürüzlülüğü Üzerindeki Etkisi. 8. Müh. ve Teknoloji Sempozyumu, 14-15 Mayıs/Çankaya Üniversitesi/Ankara, s 45-50
  • Saedon, J., Norrdin N., A., Yahaya, M., A., Kasim, M., S., and Mohamad Nor, NH., 2016. Investigation of Cutting Edge Radius Effect in Macro-machining and Micro-machining. Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014), DOI 10.1007/978-981-10-0534-3_2, 17-26p.
  • Schaller, T., Bohn, L., Mayer, J., Schubert, K., 1999. Microstructure grooves with a width of less than 50 mm cut with ground hard metal micro end mills. Precision Engineering 23 229–235.
  • Schmitz, T., Couey, J., Marsh, E., Mauntler, N., Hughes, D., 2007. Runout Effects in Milling: Surface finish, Surface Location Error, and Stability. International Journal of Machine Tools and Manufacture, 47, 841–851
  • Schmitz, T., L., Davies, M., Kennedy, M., D.,2002. Tool point frequency response prediction for high-speed machining by RCSA. Journal of Manufacturing Science and Engineering, 123, 700–707.
  • Shaw, M.C., 1995. Precision finishing. Annals of CIRP 44 (1) 343– 348.
  • Shreyes, K.L., Melkote, N., 2006. Effect of Plastic Side flow on Surface Roughness in the Micro-Turning Process. International Journal of Machine Tools and Manufacture, 46, 1778–1785.
  • Son, S., M., Lim, H,.S., Ahn, J., H., 2005. Effects of the friction coefficient on the minimum cutting thickness in micro-cutting. International Journal of Machine Tools and Manufacture 45, 529–535.
  • Thepsonthi, T., Özel, T., 2012. Multi-objective process optimization for micro-end milling of Ti6Al4V titanium alloy. Int J. Adv Manuf Technol, 63:903–914
  • Thepsonthi, T., Özel, T., 2013. Experimental and finite element simulation-based investigations on micro-milling Ti-6Al-4V titanium alloy: Effect of CBN coating on tool wear. Journal of Materials Processing Technology, 213, 532-542
  • Ucun, I., Aslantas, K., Bedir, F. 2013. An experimental investigation of the effect of coating material on tool wear in micro-milling of Inconel 718 superalloy. Wear, 300, 8–19
  • Ucun, İ., Aslantaş, K., Bedir, F. 2010. İnconel 718 Süper Alaşımının İşlenmesinde Kaplanmış Mikro Takımların Aşınma Davranışları ve Performans Analizi. Makine Teknolojileri Elektronik Dergisi, Cilt: 7, No: 4, 47-55.
  • Venkatesh, V. C., Izman, S., 2007. Precision Engineering. pp 436, Tata McGraw-Hill, USA.
  • Venkatesh, V., Swain, N., Sırınıvas, G., Kumar, P. andBarshilia, H.C., 2016. Review on the machining characteristics and research prospects of conventional micro-scale machining operations. Materials and Manufacturing Process, 32(3), 235-262.
  • Vogler, M., P., Devor, R., E., Kapoor S., G., 2004. On the modeling and analysis of machining performance in micro end milling. Journal of Manufacturing Science and Engineering 126 (4) ,685–705.
  • Vogler, M.P., Liu, X., Kapoor, S., G., Devor, R., E., Ehmann, K., F., 2002. Development of mesoscale machine tool (mMT) systems. Society of Manufacturing Engineers MS n MS02-181 1–9.
  • Wan, Y., Change, K., Sun, S., 2013, An innovative method for surface defects prevention in micro milling and its implementation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Proc IMechE Part J: Engineering Tribology 227(12) 1347–1355.
  • Wang, Z., Kovvuria, V., Araujob, A., Baccic M., Hunga, W.N.P., Bukkapatnama, S.T.S., 2016. Built-up-edge effects on surface deterioration in micro-milling Processes. Journal of Manufacturing Processes 24, 321–327. Brazil.
  • Weule, H., Huntrup, V., Tritschle, H., 2001. Micro-Cutting of Steel to Meet New Requirements in Miniaturization. Annals of the CIRP, 50(1), 61-64.
  • Wu X, Li L, Zhao M, He N, 2015. Experimental investigation of specific cutting energy and surface quality based on negative effective rake angle in micro turning. Int J Adv Manuf Technol 82:1941–194
  • Wu, X., Li, L., He, N., 2017. Investigation on the burr formation mechanism in micro-cutting. Precision Engineering, 47, pp191–196.
  • Wu, T., 2012. Tooling Performance in Micro Milling: Modelling, Simulation, and Experimental Study. School of Engineering and Design, Brunel University, Doctorate Thesis, 229pp, England.
  • Y. Okazaki, N. Mishima, K. Ashida, 2004. Micro factory-concept, history, and developments. Journal of Manufacturing Science and Engineering 126, 837–844.
  • Y.B. Bang, K. Lee, S. Oh,2005. 5-Axis micro milling machine for machining micro parts. Int J Advanced Manufacturing Technology, 25: 888–894
  • Yuan, Z.J., Zhou, M., Dong, S., 1996. Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultra-Precision Machining. Journal of Materials Processing Technology, 62(4), 327–330.
  • Zareena, A., R., Veldhuis, S., C., 2012. Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium. Journal of Materials Processing Technology, 212, 560-570
  • Zhan, z., Liang Li, Ning H. & Rabin Sh., 2014. An experimental study on grinding parameters for manufacturing PCD micro-milling tool. International Journal of Advanced Manufacturing Technology, V. 73, Issue 9, pp 1799–1806. London.
  • Zhang, X. , Ehmann, K., F., T., Wang, W., 2016. Cutting forces in micro-end-milling processes. International Journal of Machine Tools & Manufacture 107, 21–40, China
  • Zhou, Li, W., Xiao, Z.X., Zhang, H., B., 2015. Design and evaluation of a high-speed and precision micro spindle. Int. J. Adv. Manuf. Technol. Vol.78 (5), pp 997–1004, London.
There are 77 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Review Articles
Authors

Luqman Khaleel Haydery Alatrushı This is me

Fevzi Bedir

Nihat Yılmaz This is me 0000-0002-8689-1048

Publication Date June 25, 2020
Submission Date July 19, 2018
Acceptance Date May 6, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Alatrushı, L. K. H., Bedir, F., & Yılmaz, N. (2020). THE BASIC CONCEPTS OF MICRO-MILLING PROCESS AND ITS REVIEW IN TERMS OF DISTINCTIVE PARAMETERS. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(2), 643-654. https://doi.org/10.21923/jesd.446078