Research Article
BibTex RIS Cite

A GENERAL EVALUATION AND NEW ANALYSIS APPROACHES ON SEISMIC ANALYSIS OF STEEL GRAIN STORAGE SILOS

Year 2020, Volume: 8 Issue: 2, 501 - 520, 25.06.2020
https://doi.org/10.21923/jesd.685223

Abstract

The importance of grain storage silos is increasing day by day to satisfy the needs of the agricultural industry. In these silos; wheat, barley, oats, corn, rice, and similar basic foodstuffs are stored. Grain storage silos built in seismic regions attract the attention of civil engineering. Critical buckling and explosions may occur in the walls of thin-walled silos, especially under seismic source pressures. This study primarily includes an overview of important seismic analyzes about silos, but also presents new design approaches. Correct seismic analysis of grain storage silos will directly contribute to the prevention of possible damages. Cereals in the silo; Besides their static pressures, they cause different dynamic pressures due to the friction created by the particles among themselves and in the silo wall during seismic motion. When the silo and its contents are exposed to ground acceleration, harsh behavior occurs in the particles and the silo wall. In the analysis made with the finite element method, the movements of the particles due to horizontal and vertical acceleration should be simulated and the stresses and buckling in the silo wall should be observed. There are deficiencies in the finite element analysis in the literature, the intergranular gaps in the silo and the simulation of compression ratios. Grain particles in the silo must be simulated in a realistic way, ie as bulk material. It is proposed as a new approach to use the discrete elements method and the finite elements method to ensure that the simulations and analyzes are rational.

References

  • Amundson, L. (1945). Determination of band stresses and lateral wheat pressures for a cylindrical grain bin. Agricultural Engineering, 26, 321-345.
  • ANSI/ASAE EP433 DEC (R2011)Loads Exerted by Free-Flowing Grain on Bins, USA, EP433 Stat. ( ).
  • Braun, A., & Eibl, J. (2009). Pressures under earthquake loading. Silos: fundamental of theory, behavior and design. Taylor & Francis, London, 518-527.
  • Butenweg, C., Rosin, J., & Holler, S. (2017). Analysis of cylindrical granular material silos under seismic excitation. Buildings, 7(3), 61.
  • Carson, J., & Craig, D. (2015). Silo design codes: Their limits and inconsistencies. Procedia engineering, 102, 647-656.
  • Çelik, A. İ., Köse, M. M., Akgül, T., & Apay, A. C. (2019). Effects of The Shell Thickness On The Directional Deformation And Buckling On The Cylindrical Steel Water Tanks Under The Kobe Earthquake Loading. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 269-281.
  • Demir, F., & Saltan, M. (2017). Deprem Etkisi Altında Demiryolu Üstyapısı Davranışının İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 5, 615-620 doi:10.21923/jesd.283161
  • Dogangun, A., Karaca, Z., Durmus, A., & Sezen, H. (2009). Cause of damage and failures in silo structures. Journal of Performance of Constructed Facilities, 23(2), 65-71.
  • Hirshfeld, D., & Rapaport, D. (2001). Granular flow from a silo: discrete-particle simulations in three dimensions. The European Physical Journal E, 4(2), 193-199.
  • Horabik, J., Parafiniuk, P., & Molenda, M. (2016). Experiments and discrete element method simulations of distribution of static load of grain bedding at bottom of shallow model silo. Biosystems Engineering, 149, 60-71.
  • Jamieson, J. A. (1903). Grain pressures in deep bins. CSCE Trans. CSCE Trans, 17:554–607(607), 554–607
  • Janssen, H. (1895). Versuche Uber Getreidedruck in Silozellen Vol. 39. Zeitschrift. Verein Deutcher Ingenieure, Dusseldorf. Germany.
  • Kanyilmaz, A., & Castiglioni, C. A. (2017). Reducing the seismic vulnerability of existing elevated silos by means of base isolation devices. Engineering Structures, 143, 477-497.
  • Keppler, I., Kocsis, L., Oldal, I., Farkas, I., & Csatar, A. (2012). Grain velocity distribution in a mixed flow dryer. Advanced Powder Technology, 23(6), 824-832.
  • Koenen, M. (1896). Berechnung des Seiten und Bodendrucks in Silozellen. Centralblatt der Bauverwaltung, 16, 446-449.
  • Landry, J. W., Grest, G. S., Silbert, L. E., & Plimpton, S. J. (2003). Confined granular packings: structure, stress, and forces. Physical Review E, 67(4), 041303.
  • Li, H. (1994). Analysis of steel silo structures on discrete supports.
  • Livaoglu, R., & Durmuş, A. (2016). A simplified approximation for seismic analysis of silo–bulk material system. Bulletin of Earthquake Engineering, 14(3), 863-887.
  • Malhotra, P. (2000). Practical nonlinear seismic analysis of tanks. Earthquake Spectra, 16(2), 473-492.
  • Mehretehran, A. M., & Maleki, S. (2018). 3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action. Thin-Walled Structures, 131, 654-667.
  • Oldal, I., & Safranyik, F. (2015). Extension of silo discharge model based on discrete element method. Journal of Mechanical Science and Technology, 29(9), 3789-3796.
  • Ovarlez, G., Fond, C., & Clément, E. (2003). Overshoot effect in the Janssen granular column: a crucial test for granular mechanics. Physical Review E, 67(6), 060302.
  • Pieraccini, L., Palermo, M., Silvestri, S., Gasparini, G., & Trombetti, T. (2016). Seismic horizontal forces exerted by granular material on flat bottom silos: experimental and analytical results.
  • Pieraccini, L., Palermo, M., Stefano, S., & Trombetti, T. (2017). On the Fundamental Periods of Vibration of Flat-Bottom Ground-Supported Circular Silos containing Gran-like Material. Procedia engineering, 199, 248-253.
  • Pieraccini, L., Silvestri, S., & Trombetti, T. (2015). Refinements to the Silvestri’s theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material. Bulletin of Earthquake Engineering, 13(11), 3493-3525.
  • Pozzati, P., & Ceccoli, C. (1972). Teoria e tecnica delle strutture (Vol. 2): Utet.
  • Rankine, W. M. (1857). On the stability of loose earth. Philos Trans R Soc Lond 147,9–27.(147).
  • Rotter, J. (2001). Guide for the economic design of circular metal silos. Spon. Press. In: Taylor & Francis Group, London, New York.
  • Rotter, J., Holst, J., Ooi, J., & Sanad, A. (1998). Silo pressure predictions using discrete–element and finite–element analyses. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1747), 2685-2712.
  • Rotter, J., & Hull, T. (1989). Wall loads in squat steel silos during earthquakes. Engineering Structures, 11(3), 139-147.
  • Schwab, C. V., Ross, I. J., White, G. M., & Colliver, D. G. (1994). Wheat loads and vertical pressure distribution in a full-scale bin part I—filling. Transactions of the ASAE, 37(5), 1613-1619.
  • Silvestri, S., Gasparini, G., Trombetti, T., & Foti, D. (2012). On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes. Bulletin of Earthquake Engineering, 10(5), 1535-1560.
  • Silvestri, S., Ivorra, S., Chiacchio, L. D., Trombetti, T., Foti, D., Gasparini, G., . . . Taylor, C. (2016). Shaking‐table tests of flat‐bottom circular silos containing grain‐like material. Earthquake Engineering & Structural Dynamics, 45(1), 69-89.
  • Simulation, E. (2019). EDEM simulation. Retrieved from https://www.edemsimulation.com/software/
  • Standard, A. (1996). Loads on Bulk Solids Containers, 1996. Standards Association of Australia, 23.
  • Standard, B. (2006). Eurocode 1: Actions on structures.
  • Tatko, R., & Kobielak, S. (2008). Horizontal bulk material pressure in silo subjected to impulsive load. Shock and Vibration, 15(5), 543-550.
  • Trahair, N., Abel, A., Ansourian, P., Irvine, H., & Rotter, J. (1983). Structural design of steel bins for bulk solids. Australian Institute of Steel Construction, Sydney, Australia, 30.
  • Vanel, L., Claudin, P., Bouchaud, J.-P., Cates, M., Clément, E., & Wittmer, J. (2000). Stresses in silos: comparison between theoretical models and new experiments. Physical review letters, 84(7), 1439.
  • Veletsos, A. S., & Younan, A. H. (1998). Dynamics of solid-containing tanks. II: Flexible tanks. Journal of Structural Engineering, 124(1), 62-70.
  • Yaylacı, M., & Terzi, C. (2018). Temas Problemlerinde Sonlu Elemanlar Yönteminin Doğruluğunun İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (3), 511-519 . doi:0.21923/jesd.407121

ÇELİK TAHIL DEPOLAMA SİLOLARININ SİSMİK ANALİZİ ÜZERİNE GENEL BİR DEĞERLENDİRME VE YENİ ANALİZ YAKLAŞIMLARI

Year 2020, Volume: 8 Issue: 2, 501 - 520, 25.06.2020
https://doi.org/10.21923/jesd.685223

Abstract

Tahıl depolama silolarının önemi tarımsal endüstrinin ihtiyacını karşılamak için her geçen gün artmaktadır. Bu silolarda; buğday, arpa, yulaf, mısır, pirinç ve benzeri temel gıda maddeleri depolanmaktadır. Sismik bölgelerde inşa edilen tahıl depolama siloları, inşaat mühendisliğinin ilgisini çekmektedir. Sismik kaynaklı basınçlar altında özellikle ince cidarlı siloların, cidarlarında kritik burkulmalar ve patlamalar meydana gelebilmektedir. Bu çalışma öncelikle silolar hakkında önemli sismik analizlerin genel değerlendirmesini içermekle birlikte, yeni tasarım yaklaşımlarını da sunmaktadır. Tahıl depolama silolarının sismik analizlerinin doğru yapılması, meydana gelebilecek hasarların önlenmesine doğrudan katkı sağlayacaktır. Silo içindeki tahıllar; statik basınçlarının yanı sıra, sismik hareket sırasında taneciklerin kendi aralarında ve silo cidarında oluşturdukları sürtünmelerden dolayı farklı dinamik basınçlara sebep olmaktadırlar. Silo ve içeriği zemin ivmesine maruz kaldığında, partiküllerde ve silo duvarında sert davranışlar meydana gelmektedir. Sonlu elemanlar metodu ile yapılan analizlerde taneciklerin yatay ve dikey ivmelenmeye bağlı hareketlerinin simüle edilerek silo cidarında oluşacak gerilmelerin ve burkulmaların gözlemlenmesi gerekir. Literatürdeki sonlu elemanlar analizlerinde, silo içindeki tanecikler arası boşluklar ve sıkıştırma oranlarının simülasyonunda eksiklikler vardır. Silo içindeki tahıl taneciklerinin gerçeğe uygun bir şeklide, yani parçacıklı dökme malzeme (bulk material) olarak simüle edilmesi gerekir. Simülasyonların ve analizlerin gerçeğe uygunluğunu sağlamak için ayrık elemanlar metodu ile sonlu elemanlar metodunun birlikte kullanılması yeni bir yaklaşım olarak önerilmektedir.

References

  • Amundson, L. (1945). Determination of band stresses and lateral wheat pressures for a cylindrical grain bin. Agricultural Engineering, 26, 321-345.
  • ANSI/ASAE EP433 DEC (R2011)Loads Exerted by Free-Flowing Grain on Bins, USA, EP433 Stat. ( ).
  • Braun, A., & Eibl, J. (2009). Pressures under earthquake loading. Silos: fundamental of theory, behavior and design. Taylor & Francis, London, 518-527.
  • Butenweg, C., Rosin, J., & Holler, S. (2017). Analysis of cylindrical granular material silos under seismic excitation. Buildings, 7(3), 61.
  • Carson, J., & Craig, D. (2015). Silo design codes: Their limits and inconsistencies. Procedia engineering, 102, 647-656.
  • Çelik, A. İ., Köse, M. M., Akgül, T., & Apay, A. C. (2019). Effects of The Shell Thickness On The Directional Deformation And Buckling On The Cylindrical Steel Water Tanks Under The Kobe Earthquake Loading. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 269-281.
  • Demir, F., & Saltan, M. (2017). Deprem Etkisi Altında Demiryolu Üstyapısı Davranışının İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 5, 615-620 doi:10.21923/jesd.283161
  • Dogangun, A., Karaca, Z., Durmus, A., & Sezen, H. (2009). Cause of damage and failures in silo structures. Journal of Performance of Constructed Facilities, 23(2), 65-71.
  • Hirshfeld, D., & Rapaport, D. (2001). Granular flow from a silo: discrete-particle simulations in three dimensions. The European Physical Journal E, 4(2), 193-199.
  • Horabik, J., Parafiniuk, P., & Molenda, M. (2016). Experiments and discrete element method simulations of distribution of static load of grain bedding at bottom of shallow model silo. Biosystems Engineering, 149, 60-71.
  • Jamieson, J. A. (1903). Grain pressures in deep bins. CSCE Trans. CSCE Trans, 17:554–607(607), 554–607
  • Janssen, H. (1895). Versuche Uber Getreidedruck in Silozellen Vol. 39. Zeitschrift. Verein Deutcher Ingenieure, Dusseldorf. Germany.
  • Kanyilmaz, A., & Castiglioni, C. A. (2017). Reducing the seismic vulnerability of existing elevated silos by means of base isolation devices. Engineering Structures, 143, 477-497.
  • Keppler, I., Kocsis, L., Oldal, I., Farkas, I., & Csatar, A. (2012). Grain velocity distribution in a mixed flow dryer. Advanced Powder Technology, 23(6), 824-832.
  • Koenen, M. (1896). Berechnung des Seiten und Bodendrucks in Silozellen. Centralblatt der Bauverwaltung, 16, 446-449.
  • Landry, J. W., Grest, G. S., Silbert, L. E., & Plimpton, S. J. (2003). Confined granular packings: structure, stress, and forces. Physical Review E, 67(4), 041303.
  • Li, H. (1994). Analysis of steel silo structures on discrete supports.
  • Livaoglu, R., & Durmuş, A. (2016). A simplified approximation for seismic analysis of silo–bulk material system. Bulletin of Earthquake Engineering, 14(3), 863-887.
  • Malhotra, P. (2000). Practical nonlinear seismic analysis of tanks. Earthquake Spectra, 16(2), 473-492.
  • Mehretehran, A. M., & Maleki, S. (2018). 3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action. Thin-Walled Structures, 131, 654-667.
  • Oldal, I., & Safranyik, F. (2015). Extension of silo discharge model based on discrete element method. Journal of Mechanical Science and Technology, 29(9), 3789-3796.
  • Ovarlez, G., Fond, C., & Clément, E. (2003). Overshoot effect in the Janssen granular column: a crucial test for granular mechanics. Physical Review E, 67(6), 060302.
  • Pieraccini, L., Palermo, M., Silvestri, S., Gasparini, G., & Trombetti, T. (2016). Seismic horizontal forces exerted by granular material on flat bottom silos: experimental and analytical results.
  • Pieraccini, L., Palermo, M., Stefano, S., & Trombetti, T. (2017). On the Fundamental Periods of Vibration of Flat-Bottom Ground-Supported Circular Silos containing Gran-like Material. Procedia engineering, 199, 248-253.
  • Pieraccini, L., Silvestri, S., & Trombetti, T. (2015). Refinements to the Silvestri’s theory for the evaluation of the seismic actions in flat-bottom silos containing grain-like material. Bulletin of Earthquake Engineering, 13(11), 3493-3525.
  • Pozzati, P., & Ceccoli, C. (1972). Teoria e tecnica delle strutture (Vol. 2): Utet.
  • Rankine, W. M. (1857). On the stability of loose earth. Philos Trans R Soc Lond 147,9–27.(147).
  • Rotter, J. (2001). Guide for the economic design of circular metal silos. Spon. Press. In: Taylor & Francis Group, London, New York.
  • Rotter, J., Holst, J., Ooi, J., & Sanad, A. (1998). Silo pressure predictions using discrete–element and finite–element analyses. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1747), 2685-2712.
  • Rotter, J., & Hull, T. (1989). Wall loads in squat steel silos during earthquakes. Engineering Structures, 11(3), 139-147.
  • Schwab, C. V., Ross, I. J., White, G. M., & Colliver, D. G. (1994). Wheat loads and vertical pressure distribution in a full-scale bin part I—filling. Transactions of the ASAE, 37(5), 1613-1619.
  • Silvestri, S., Gasparini, G., Trombetti, T., & Foti, D. (2012). On the evaluation of the horizontal forces produced by grain-like material inside silos during earthquakes. Bulletin of Earthquake Engineering, 10(5), 1535-1560.
  • Silvestri, S., Ivorra, S., Chiacchio, L. D., Trombetti, T., Foti, D., Gasparini, G., . . . Taylor, C. (2016). Shaking‐table tests of flat‐bottom circular silos containing grain‐like material. Earthquake Engineering & Structural Dynamics, 45(1), 69-89.
  • Simulation, E. (2019). EDEM simulation. Retrieved from https://www.edemsimulation.com/software/
  • Standard, A. (1996). Loads on Bulk Solids Containers, 1996. Standards Association of Australia, 23.
  • Standard, B. (2006). Eurocode 1: Actions on structures.
  • Tatko, R., & Kobielak, S. (2008). Horizontal bulk material pressure in silo subjected to impulsive load. Shock and Vibration, 15(5), 543-550.
  • Trahair, N., Abel, A., Ansourian, P., Irvine, H., & Rotter, J. (1983). Structural design of steel bins for bulk solids. Australian Institute of Steel Construction, Sydney, Australia, 30.
  • Vanel, L., Claudin, P., Bouchaud, J.-P., Cates, M., Clément, E., & Wittmer, J. (2000). Stresses in silos: comparison between theoretical models and new experiments. Physical review letters, 84(7), 1439.
  • Veletsos, A. S., & Younan, A. H. (1998). Dynamics of solid-containing tanks. II: Flexible tanks. Journal of Structural Engineering, 124(1), 62-70.
  • Yaylacı, M., & Terzi, C. (2018). Temas Problemlerinde Sonlu Elemanlar Yönteminin Doğruluğunun İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 6 (3), 511-519 . doi:0.21923/jesd.407121
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Research Articles
Authors

Ali İhsan Çelik 0000-0001-7233-7647

Mehmet Metin Kose 0000-0002-7462-1577

Publication Date June 25, 2020
Submission Date February 5, 2020
Acceptance Date April 19, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Çelik, A. İ., & Kose, M. M. (2020). ÇELİK TAHIL DEPOLAMA SİLOLARININ SİSMİK ANALİZİ ÜZERİNE GENEL BİR DEĞERLENDİRME VE YENİ ANALİZ YAKLAŞIMLARI. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(2), 501-520. https://doi.org/10.21923/jesd.685223