Review
BibTex RIS Cite

SOFRALIK ZEYTİN ÜRETİMİNDEN KAYNAKLANAN ATIKSULARIN ÖZELLİKLERİ VE ARITMA YÖNTEMLERİ

Year 2020, Volume: 8 Issue: 4, 1312 - 1323, 25.12.2020
https://doi.org/10.21923/jesd.774689

Abstract

Türkiye, zeytin üretiminde dünyanın önde gelen ülkelerinden biridir. Toplanan (hasat edilen) zeytinin yaklaşık %25’i sofralık zeytin olarak tüketilmekte, geri kalan %75’i zeytinyağı olarak işlenmektedir. Ülkemizde sofralık zeytin üretiminde farklı hazırlama yöntemleri (İspanyol tipi işlem, çizme ve kırma, salamura tipi, sele tipi, teneke tipi, kalamata tipi, kostikli tip, doğal fermente, vb.) kullanılmaktadır. Hazırlama yöntemine bağlı olarak atıksuyun miktar ve kalitesinde farklılıklar görülmekle birlikte, temelde sofralık zeytin üretimi (SZÜ) işlemlerinden yüksek organik madde, fenolik bileşikler, klorür, alkalinite, çözünmüş katı madde içeren koyu renkli atıksular oluşmaktadır. Bu nedenle, SZÜ atıksularının arıtılması için fiziksel, kimyasal ve biyolojik arıtma süreçlerinin bir arada uygulandığı çözümler önerilmektedir. Türkiye’de SZÜ atıksularının arıtılmasına yönelik teknolojik uygulamalar sınırlıdır. Literatürde, laboratuvar ölçekli bazı çalışmaların sonuçları sunulmaktadır. Ancak, konuyu SZÜ süreçleri ve buna bağlı olarak atıksu kaynakları, atıksu miktarı, atıksu karakterizasyonu ve arıtma alternatifleri şeklinde tüm bileşenleri ile ele alan bir çalışma bulunmamaktadır. Makalede, önce SZÜ süreçleri ile üretimden kaynaklanan atıksuların miktar ve kalitesi hakkında kapsamlı bilgi verilmiştir. Daha sonra SZÜ atıksularının arıtımında öne çıkan yöntemler tanıtılmış, uygun arıtma kombinasyonları irdelenmiştir.

References

  • Aggelis, G.G., Gavala, H.N., Lyberatos, G., 2001. Combined and Separate Aerobic and Anaerobic Biotreatment of Green Olive Debittering Wastewater, J Agric Eng Res, 80, 283–92.
  • Antonin, V.S., Santos, M.C., Garcia-Segura, S., Brillas, E., 2015. Electrochemical Incineration of the Antibiotic Ciprofloxacin in Sulfate Medium and Synthetic Urine Matrix, Water Res., 83, 31-41.
  • Ayed L., Chammam N., Asses N., Hamdi, M., 2013. Optimization of Biological Pre-treatment of Green Table Olive Processing Wastewaters Using Aspergillus Niger, Bioremediation&Biodegradation, 4(9), 1-10.
  • Ayed, L., Asses, N., Chammem, N., Othman, N.B., Hamdi, M., 2017. Advanced Oxidation Process and Biological Treatments for Table Olive Processing Wastewaters: Constraints and a Novel Approach to Integrated Recycling Process: A Review, Biodegradation 28 (2-3), 125-138.
  • Balatsorus G., 1997. Sofralık Zeytin İşleme Teknolojisi, Dünya Zeytin Ansiklopedisi, içinde (s.295-342), Madrid-İspanya.
  • Beltran-Heredia, J., Torregrosa, J., Dominguez, J.R., Garcia, J., 2000. Treatment of Black-Olive Wastewaters by Ozonation and Aerobic Biological Degradation, Water Res., 34 (14), 3515–3522.
  • Beltran-Heredia, J., Torregrosa, J., Dominguez, J.R., Garcia, J., 2000. Aerobic Biological Treatment of Black Table Olive Washing Wastewaters: Effect of an Ozonation Stage, Process Biochem., 35 (10), 1183–1190.
  • Beltran-Heredia, J., Gonzalez, T., Garcia, J., 2008. Kinetics of the Biodegradation of Green Table Olive Wastewaters by Aerobic and Anaerobic Treatments, Journal of Hazardous Materials, 154 (1-3), 839-845.
  • Benitez, F.J., Acero, J.L., Gonzalez, T., Garcia, J., 2001. Organic Matter Removal from Wastewaters of the Black Olive Industry by Chemical and Biological Procedures, Process Biochem., 37, 257–265.
  • Bhattacharjee, S., Datta, S., Bhattacharjee, C., 2006. Performance Study During Ultrafiltration of Kraft Black Liquor Using Rotating Disk Membrane Module. J. Clean. Prod., 14, 497-504.
  • Brenes, M., García, P., Romero, Concepcion, Garrido, A., 2000. Treatment of Green Table Olive Wastewaters by an Activated-Sludge Process. J. Chem. Technol. Biotechnol., 75, 459-463.
  • Brenes M., Romero C., Castro A., 2004. Combined Fermentation and Evaporation Processes for Treatment of Washwaters from Spanish-Style Green Olive Processing, J. Chem. Technol. Biotechnol., 79, 253–259.
  • Cappelletti G.M., Nicoletti G.M., Russo C., 2011. Wastewater from Table Olive Industries. F. Sebastian, G. Einschlag (Eds.), Wastewater—Evaluation and Management, InTech, içinde (s.351-376)i Rijeka.
  • Cassano, C., Conidi, L.,Giorno, E.,Drioli, 2013. Fractionation of Olive Mill Wastewaters by Membrane Separation Techniques, J. Hazard. Mater., 248–249, 185–193.
  • Cassini, A.S., Tessaro, I.C., Marczak, L.D.F., Pertile, C., 2010. Ultrafiltration of Wastewater from Isolated Soy Protein Production: A Comparison of Three UF Membranes. J. Clean. Prod., 18, 260-265.
  • Charoenprasert, S., Mitchell, A., 2014. Influence of California-Style Black Ripe Olive Processing on the Formation of Acrylamide, J. Agric. Food Chem., 62, 8716–8721.
  • Chatzisymeon, E., Stypas, E., Bousios, S., Xekoukoulotakis, N.P., Mantzavinos, D., 2008. Photocatalytic Treatment of Black Table Olive Processing Wastewater, J.Hazard. Mater., 154, 1090–1097.
  • Cillidag S.I., 2013. Table Olive Processing Technologies. Arcas N. (edt), Present and Future of the Mediterranean Olive Sector, içinde (s.67-64). CIHEAM / IOC, Zaragoza.
  • Deligiorgis, N.P., Xekoukoulotakis, E., Diamadopoulos, D., Mantzavinos, 2008. Electrochemical Oxidation of Table Olive Processing Wastewater over Boron-Doped Diamond Electrodes: Treatment Optimization by Factorial Design, Water Res., 42, 1229–1237.
  • Dereli R.K., Özgün H., Erşahin M. E, Koyuncu İ., Altınbaş M., Öztürk İ., 2017. Evaporasyon Prosesinin Maya Endüstrisi Atıksu Karakterizasyonu ve Arıtılabilirliğine Etkisi. Dokuz Eylül Üniversitesi-MühendislikFakültesi, Fen ve Mühendislik Dergisi, 19 (56) 389-398.
  • Dikici Y., 2017. Sofralık Zeytin Atık Suyunun Elektrokoagülasyon Yöntemi ile Arıtımı. Lisans Tezi, Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Izmir.
  • Dölgen, D.; Sarptaş, H.; Alpaslan, M.N. 2013. Desalinasyon Tesislerinde Yenilenebilir Enerji Kaynaklarının Kullanımı. Yenilenebilir Enerji Kaynakları Sempozyumu – YEKSEM, s.130-135.
  • Fendri, I., Chamkha, M., Bouaziz, M., Labat, M., Sayadi, S., Abdelkafi, S., 2013. Olive Fermentation Brine: Biotechnological potentialities and Valorization, Environ. Technol., 34, 181–193.
  • Fernández, A.G., Díez, M.J.F., Adams, M.R., 1997. Table Olives: Production and Processing, First ed., Chapman & Hall, London.
  • Galanakis, C.M., 2012. Recovery of High Added-Value Components from Foodwastes: Conventional, Emerging Technologies and Commercialized Applications, Trends. Food Sci. Technol., 26, 68–87.
  • Galanakis, C.M., Tornberg, E., Gekas, V., 2010. Clarification of High-Added Value Products from Olive Mill Wastewater. J. Food Eng., 99, 190–197.
  • Garcia-Ivars, J., Iborra-Clar, M., Alcaina-Miranda, M., Mendoza-Roca, J., Pastor-Alcaniz, L., 2015. Treatment of Table Olive Processing Wastewaters using Novel Photomodified Ultrafiltration Membranes as First Step for Recovering Phenolic Compounds. J. Hazard. Mater., 290, 51-59.
  • García-García P., López-López A., Moreno-Baquero J. M., Garrido-Fernández A. (2011). Treatment of Wastewaters from the Green Table Olive Packaging Industry Using Electro-Coagulation. Chem. Eng. J., 170, 59–66.
  • Giannis, A., Kalaitzakis, M., Diamadopoulos, E., 2007. Electrochemical Treatment of Olive Mill Wastewater, J. Chem. Technol. Biotechnol., 82, 663–671.
  • Gomez, A.H.S., Garcia, P.G., Navarro, L.R., 2006. Elaboration of Table Olives. Grasas Y Aceites, 57 (1), 86-94.
  • Gotsia, M., Kalogerakisa, N., Psillakis, E., Samaras, P., Mantzavinosa, D., 2005. Electrochemical Oxidation of Oliveoil Mill Wastewaters, Water Research, 39 (17), 4177-4187.
  • International Olive Council-IOC, 2019. Table Olives World Production [WWW Document], World Table Olive Figures, Production and Consumption, URL http://www.internationaloliveoil.org/estaticos/view/136-country-profiles (accesed 12 March 2019).
  • Kiai, H.,Hafidi, A., 2014. Chemical Composition Changes in Four Green Olive Cultivars During Spontaneous Fermentation. Food Sci.Technol., 57(2), 663–670.
  • Kim, J.S., Kim, B.G., Lee, C.H., Kim, S.W., Jee, H.S., Koh, J.H., Fane, A.G., 1997. Development of Clean Technology in Alcohol Fermentation Industry. J. Clean. Prod., 5, 263-267.
  • Kopsidas G.C., 1992. Wastewater from the Preparation of Table Olives. Water Res., 26(5), 629–631.
  • Kotsou, M.,Kyriacou, A.,Lasaridi, K., Pilidis, G., 2004. Integrated Aerobic Biological Treatment and Chemical Oxidation with Fenton’s Reagent for the Processing of Gren Table Olive Wastewater. Process Biochemistry, 39 (11), 1653-1660.
  • Long, Y., Ni, J.,Wang, Z., 2015. Subcellular Mechanism of Escherichia Coli Inactivation During Electrochemical Disinfection with Boron-Doped Diamond Anode: A Comparative Study of Three Electrolytes. Water Res., 84, 198-206.
  • Lutke-Eversloh, C., Schulz, M., Wagner, M., Ternes, T.A., 2015. Electrochemical Oxidation of Tramadol in Low-Salinity Reverse Osmosis Concentrates Using Boron-Doped Diamond Anodes. Water Res., 72, 293-304.
  • Mudimu, O.A., Peters, M., Brauner, F., Braun, G., 2012. Overview of Membrane Processes for the Recovery of Polyphenols from Olive Mill Wastewater. Am. J. Environ. Sci., 8, 195–201.
  • Niaounakis, M.,Halvadakis, C.P., 2006. Olive Processing Waste Management: Literature Review and Patent Survey, Waste Management Series, Elsevier, Amsterdam, Netherlands.
  • Papadaki, E., Mantzouridou, F. T., 2016. Current Status and Future Challenges of Table Olive Processing Wastewater Valorization. Biochemical Engineering Journal, 112, 103–113.
  • Parinos, C.S., Stalikas, C.D, Giannopoulos, T.S., Pilidis, G.A., 2007. Chemical and Physicochemical Profile of Wastewaters Produced from the Different Stages of Spanish-Style Green Olives Processing. J. Hazard. Mater., 145, 339–343.
  • Polonio, E.F., Roca J.A.M., Clar A.I., Molina J.L.A, Alcaniz L.P., 2015. Comparison of Two Strategies for the Start-up of a Biological Reactor for the Treatment of Hypersaline Effluents from a Table Olive Packaging Industry. Chem. Eng. J., 273, 595–602.
  • Polonio, E.F.,Mendoza-Roca, J.A., Iborra-Clar, A., Alonso-Molina, J.A., Pastor-Alcañiz, L., 2016. Biological Treatment Performance of Hypersaline Wastewaters with High Phenols Concentration from Table Olive Packaging Industry Using Sequencing Batch Reactors. Journal of Industrial and Engineering Chemistry, 43, 44-52.
  • Rejano, L., Garrido, A., El Cultivo del Olivo, 2004. Barranco D., Fernández Escobar R. and RalloL.. (eds). ISBN: 84-8474-128-1 (Junta de Andalucia), Madrid.
  • Salamah, W. K.B., 2015. Treatment of Olive Mill Wastewater by Ozonation and Electrocoagulation Processes. Civil and Environmental, 7 (2), 80-91.
  • Sanchez, A.H., Beato, V.M., Lopez, A.L., Montano, A., 2014. Comparative Study of the Use of Sarcosine, Proline and Glycine as Acrylamide Inhibitors in Ripe Olive Processing, Food Addit. Contam: Part A Chem. Anal. Control Expo. Risk Assess., 31 (2) 242–249.
  • Tatoulis, T.I, Zapantiotis, S., Frontistis, Z., Akratos C.S., Tekerlekopoulou, A.G., Pavlou, S.,Mantzavinos, D., Vayenas, D.V.,2017. A Hybrid System Comprising an Aerobic Biological Process and Electrochemical Oxidation for the Treatment of Black Table Olive Processing Wastewaters. International Biodeterioration&Biodegradation, 109, 104-112.
  • Tsagaraki,E.,Lazarides, H.N.,Petrotos, K.B., 2007. Olive Mill Wastewater Treatment, V. Oreopoulou, W. Russ (Eds.), Utilization of By-products and Treatment of Waste in the Food Industry, içinde (s.133-157), Springer, New York.
  • Türkay, Ö, Barışçı, S., Ulusoy, E., Dimoglo A., 2018. Kanser İlaçları Atıksularının Elektrooksidasyon Prosesi ile Giderimi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 22 (2), 913-917.
  • Unal, B.O., Canbolata, C.B., Dizge, N., Keskinler B., 2018. Treatability Studies on Optimizing Coagulant Type and Dosage in Combined Coagulation/Membrane Processes for Table Olive Processing Wastewater. Journal of Water Process Engineering, 26, 301-307.
  • Ulusal Zeytin ve Zeytinyağı Konseyi, UZZK , 2019. 2019-2020 Üretim Sezonu Sofralık Zeytin Ve Zeytinyağı Rekoltesi Ulusal Resmi Tespit Heyeti Raporu, http://uzzk.org/Belgeler/UZZK_2019_2020_Turkıye_Rekolte_Raporu.pdf (erişim 18.10.2020).
  • Zarkadas, I.S., Pilidis, G.A., 2011. Anaerobic Co-digestion of Table Olive Debittering&Washing Effluent, Cattle Manure and Pigmanure in Batch and High Volume Laboratory Anaerobic Digesters: Effect of Temperature. Bioresour. Technol., 102 4995–5003.

CHARACTERISTICS OF WASTEWATER GENERATED FROM TABLE OLIVE PRODUCTION AND TREATMENT METHODS

Year 2020, Volume: 8 Issue: 4, 1312 - 1323, 25.12.2020
https://doi.org/10.21923/jesd.774689

Abstract

Turkey is one of the biggest olive producers in the world. Approximately 25% of harvested olive is consumed as table olive, and the rest 75% is used for olive oil production. Various methods (e.g. Spanish style, slit and crushed, salamura, sele, kalamata, caustic, natural fermented, etc.) are applied in table olive processing in Turkey. Table olive wastewater (TOWW) contains high organic matter, phenolic compounds, chloride, alkalinity, dissolved solids, and dark color, in general, however, the quantity and quality of the wastewater differs significantly depending on the production method. Therefore, combination of physical, chemical, and biological treatment methods is recommended for purification of the TOWW. In Turkey, technologic applications for the treatment of TOWW are limited. The results of some laboratory scale studies are presented in literature. However, there is no study addressing the subject with all its components (olive production processes, TOWW sources, wastewater quantity, wastewater characterization, and treatment alternatives). In the article, firstly, the comprehensive information about table olive production processes, quantity and quality of wastewater generated from olive production is introduced. Then, prominent methods on treatment of TOWW are presented, and appropriate treatment combinations are evaluated.

References

  • Aggelis, G.G., Gavala, H.N., Lyberatos, G., 2001. Combined and Separate Aerobic and Anaerobic Biotreatment of Green Olive Debittering Wastewater, J Agric Eng Res, 80, 283–92.
  • Antonin, V.S., Santos, M.C., Garcia-Segura, S., Brillas, E., 2015. Electrochemical Incineration of the Antibiotic Ciprofloxacin in Sulfate Medium and Synthetic Urine Matrix, Water Res., 83, 31-41.
  • Ayed L., Chammam N., Asses N., Hamdi, M., 2013. Optimization of Biological Pre-treatment of Green Table Olive Processing Wastewaters Using Aspergillus Niger, Bioremediation&Biodegradation, 4(9), 1-10.
  • Ayed, L., Asses, N., Chammem, N., Othman, N.B., Hamdi, M., 2017. Advanced Oxidation Process and Biological Treatments for Table Olive Processing Wastewaters: Constraints and a Novel Approach to Integrated Recycling Process: A Review, Biodegradation 28 (2-3), 125-138.
  • Balatsorus G., 1997. Sofralık Zeytin İşleme Teknolojisi, Dünya Zeytin Ansiklopedisi, içinde (s.295-342), Madrid-İspanya.
  • Beltran-Heredia, J., Torregrosa, J., Dominguez, J.R., Garcia, J., 2000. Treatment of Black-Olive Wastewaters by Ozonation and Aerobic Biological Degradation, Water Res., 34 (14), 3515–3522.
  • Beltran-Heredia, J., Torregrosa, J., Dominguez, J.R., Garcia, J., 2000. Aerobic Biological Treatment of Black Table Olive Washing Wastewaters: Effect of an Ozonation Stage, Process Biochem., 35 (10), 1183–1190.
  • Beltran-Heredia, J., Gonzalez, T., Garcia, J., 2008. Kinetics of the Biodegradation of Green Table Olive Wastewaters by Aerobic and Anaerobic Treatments, Journal of Hazardous Materials, 154 (1-3), 839-845.
  • Benitez, F.J., Acero, J.L., Gonzalez, T., Garcia, J., 2001. Organic Matter Removal from Wastewaters of the Black Olive Industry by Chemical and Biological Procedures, Process Biochem., 37, 257–265.
  • Bhattacharjee, S., Datta, S., Bhattacharjee, C., 2006. Performance Study During Ultrafiltration of Kraft Black Liquor Using Rotating Disk Membrane Module. J. Clean. Prod., 14, 497-504.
  • Brenes, M., García, P., Romero, Concepcion, Garrido, A., 2000. Treatment of Green Table Olive Wastewaters by an Activated-Sludge Process. J. Chem. Technol. Biotechnol., 75, 459-463.
  • Brenes M., Romero C., Castro A., 2004. Combined Fermentation and Evaporation Processes for Treatment of Washwaters from Spanish-Style Green Olive Processing, J. Chem. Technol. Biotechnol., 79, 253–259.
  • Cappelletti G.M., Nicoletti G.M., Russo C., 2011. Wastewater from Table Olive Industries. F. Sebastian, G. Einschlag (Eds.), Wastewater—Evaluation and Management, InTech, içinde (s.351-376)i Rijeka.
  • Cassano, C., Conidi, L.,Giorno, E.,Drioli, 2013. Fractionation of Olive Mill Wastewaters by Membrane Separation Techniques, J. Hazard. Mater., 248–249, 185–193.
  • Cassini, A.S., Tessaro, I.C., Marczak, L.D.F., Pertile, C., 2010. Ultrafiltration of Wastewater from Isolated Soy Protein Production: A Comparison of Three UF Membranes. J. Clean. Prod., 18, 260-265.
  • Charoenprasert, S., Mitchell, A., 2014. Influence of California-Style Black Ripe Olive Processing on the Formation of Acrylamide, J. Agric. Food Chem., 62, 8716–8721.
  • Chatzisymeon, E., Stypas, E., Bousios, S., Xekoukoulotakis, N.P., Mantzavinos, D., 2008. Photocatalytic Treatment of Black Table Olive Processing Wastewater, J.Hazard. Mater., 154, 1090–1097.
  • Cillidag S.I., 2013. Table Olive Processing Technologies. Arcas N. (edt), Present and Future of the Mediterranean Olive Sector, içinde (s.67-64). CIHEAM / IOC, Zaragoza.
  • Deligiorgis, N.P., Xekoukoulotakis, E., Diamadopoulos, D., Mantzavinos, 2008. Electrochemical Oxidation of Table Olive Processing Wastewater over Boron-Doped Diamond Electrodes: Treatment Optimization by Factorial Design, Water Res., 42, 1229–1237.
  • Dereli R.K., Özgün H., Erşahin M. E, Koyuncu İ., Altınbaş M., Öztürk İ., 2017. Evaporasyon Prosesinin Maya Endüstrisi Atıksu Karakterizasyonu ve Arıtılabilirliğine Etkisi. Dokuz Eylül Üniversitesi-MühendislikFakültesi, Fen ve Mühendislik Dergisi, 19 (56) 389-398.
  • Dikici Y., 2017. Sofralık Zeytin Atık Suyunun Elektrokoagülasyon Yöntemi ile Arıtımı. Lisans Tezi, Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Izmir.
  • Dölgen, D.; Sarptaş, H.; Alpaslan, M.N. 2013. Desalinasyon Tesislerinde Yenilenebilir Enerji Kaynaklarının Kullanımı. Yenilenebilir Enerji Kaynakları Sempozyumu – YEKSEM, s.130-135.
  • Fendri, I., Chamkha, M., Bouaziz, M., Labat, M., Sayadi, S., Abdelkafi, S., 2013. Olive Fermentation Brine: Biotechnological potentialities and Valorization, Environ. Technol., 34, 181–193.
  • Fernández, A.G., Díez, M.J.F., Adams, M.R., 1997. Table Olives: Production and Processing, First ed., Chapman & Hall, London.
  • Galanakis, C.M., 2012. Recovery of High Added-Value Components from Foodwastes: Conventional, Emerging Technologies and Commercialized Applications, Trends. Food Sci. Technol., 26, 68–87.
  • Galanakis, C.M., Tornberg, E., Gekas, V., 2010. Clarification of High-Added Value Products from Olive Mill Wastewater. J. Food Eng., 99, 190–197.
  • Garcia-Ivars, J., Iborra-Clar, M., Alcaina-Miranda, M., Mendoza-Roca, J., Pastor-Alcaniz, L., 2015. Treatment of Table Olive Processing Wastewaters using Novel Photomodified Ultrafiltration Membranes as First Step for Recovering Phenolic Compounds. J. Hazard. Mater., 290, 51-59.
  • García-García P., López-López A., Moreno-Baquero J. M., Garrido-Fernández A. (2011). Treatment of Wastewaters from the Green Table Olive Packaging Industry Using Electro-Coagulation. Chem. Eng. J., 170, 59–66.
  • Giannis, A., Kalaitzakis, M., Diamadopoulos, E., 2007. Electrochemical Treatment of Olive Mill Wastewater, J. Chem. Technol. Biotechnol., 82, 663–671.
  • Gomez, A.H.S., Garcia, P.G., Navarro, L.R., 2006. Elaboration of Table Olives. Grasas Y Aceites, 57 (1), 86-94.
  • Gotsia, M., Kalogerakisa, N., Psillakis, E., Samaras, P., Mantzavinosa, D., 2005. Electrochemical Oxidation of Oliveoil Mill Wastewaters, Water Research, 39 (17), 4177-4187.
  • International Olive Council-IOC, 2019. Table Olives World Production [WWW Document], World Table Olive Figures, Production and Consumption, URL http://www.internationaloliveoil.org/estaticos/view/136-country-profiles (accesed 12 March 2019).
  • Kiai, H.,Hafidi, A., 2014. Chemical Composition Changes in Four Green Olive Cultivars During Spontaneous Fermentation. Food Sci.Technol., 57(2), 663–670.
  • Kim, J.S., Kim, B.G., Lee, C.H., Kim, S.W., Jee, H.S., Koh, J.H., Fane, A.G., 1997. Development of Clean Technology in Alcohol Fermentation Industry. J. Clean. Prod., 5, 263-267.
  • Kopsidas G.C., 1992. Wastewater from the Preparation of Table Olives. Water Res., 26(5), 629–631.
  • Kotsou, M.,Kyriacou, A.,Lasaridi, K., Pilidis, G., 2004. Integrated Aerobic Biological Treatment and Chemical Oxidation with Fenton’s Reagent for the Processing of Gren Table Olive Wastewater. Process Biochemistry, 39 (11), 1653-1660.
  • Long, Y., Ni, J.,Wang, Z., 2015. Subcellular Mechanism of Escherichia Coli Inactivation During Electrochemical Disinfection with Boron-Doped Diamond Anode: A Comparative Study of Three Electrolytes. Water Res., 84, 198-206.
  • Lutke-Eversloh, C., Schulz, M., Wagner, M., Ternes, T.A., 2015. Electrochemical Oxidation of Tramadol in Low-Salinity Reverse Osmosis Concentrates Using Boron-Doped Diamond Anodes. Water Res., 72, 293-304.
  • Mudimu, O.A., Peters, M., Brauner, F., Braun, G., 2012. Overview of Membrane Processes for the Recovery of Polyphenols from Olive Mill Wastewater. Am. J. Environ. Sci., 8, 195–201.
  • Niaounakis, M.,Halvadakis, C.P., 2006. Olive Processing Waste Management: Literature Review and Patent Survey, Waste Management Series, Elsevier, Amsterdam, Netherlands.
  • Papadaki, E., Mantzouridou, F. T., 2016. Current Status and Future Challenges of Table Olive Processing Wastewater Valorization. Biochemical Engineering Journal, 112, 103–113.
  • Parinos, C.S., Stalikas, C.D, Giannopoulos, T.S., Pilidis, G.A., 2007. Chemical and Physicochemical Profile of Wastewaters Produced from the Different Stages of Spanish-Style Green Olives Processing. J. Hazard. Mater., 145, 339–343.
  • Polonio, E.F., Roca J.A.M., Clar A.I., Molina J.L.A, Alcaniz L.P., 2015. Comparison of Two Strategies for the Start-up of a Biological Reactor for the Treatment of Hypersaline Effluents from a Table Olive Packaging Industry. Chem. Eng. J., 273, 595–602.
  • Polonio, E.F.,Mendoza-Roca, J.A., Iborra-Clar, A., Alonso-Molina, J.A., Pastor-Alcañiz, L., 2016. Biological Treatment Performance of Hypersaline Wastewaters with High Phenols Concentration from Table Olive Packaging Industry Using Sequencing Batch Reactors. Journal of Industrial and Engineering Chemistry, 43, 44-52.
  • Rejano, L., Garrido, A., El Cultivo del Olivo, 2004. Barranco D., Fernández Escobar R. and RalloL.. (eds). ISBN: 84-8474-128-1 (Junta de Andalucia), Madrid.
  • Salamah, W. K.B., 2015. Treatment of Olive Mill Wastewater by Ozonation and Electrocoagulation Processes. Civil and Environmental, 7 (2), 80-91.
  • Sanchez, A.H., Beato, V.M., Lopez, A.L., Montano, A., 2014. Comparative Study of the Use of Sarcosine, Proline and Glycine as Acrylamide Inhibitors in Ripe Olive Processing, Food Addit. Contam: Part A Chem. Anal. Control Expo. Risk Assess., 31 (2) 242–249.
  • Tatoulis, T.I, Zapantiotis, S., Frontistis, Z., Akratos C.S., Tekerlekopoulou, A.G., Pavlou, S.,Mantzavinos, D., Vayenas, D.V.,2017. A Hybrid System Comprising an Aerobic Biological Process and Electrochemical Oxidation for the Treatment of Black Table Olive Processing Wastewaters. International Biodeterioration&Biodegradation, 109, 104-112.
  • Tsagaraki,E.,Lazarides, H.N.,Petrotos, K.B., 2007. Olive Mill Wastewater Treatment, V. Oreopoulou, W. Russ (Eds.), Utilization of By-products and Treatment of Waste in the Food Industry, içinde (s.133-157), Springer, New York.
  • Türkay, Ö, Barışçı, S., Ulusoy, E., Dimoglo A., 2018. Kanser İlaçları Atıksularının Elektrooksidasyon Prosesi ile Giderimi. Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 22 (2), 913-917.
  • Unal, B.O., Canbolata, C.B., Dizge, N., Keskinler B., 2018. Treatability Studies on Optimizing Coagulant Type and Dosage in Combined Coagulation/Membrane Processes for Table Olive Processing Wastewater. Journal of Water Process Engineering, 26, 301-307.
  • Ulusal Zeytin ve Zeytinyağı Konseyi, UZZK , 2019. 2019-2020 Üretim Sezonu Sofralık Zeytin Ve Zeytinyağı Rekoltesi Ulusal Resmi Tespit Heyeti Raporu, http://uzzk.org/Belgeler/UZZK_2019_2020_Turkıye_Rekolte_Raporu.pdf (erişim 18.10.2020).
  • Zarkadas, I.S., Pilidis, G.A., 2011. Anaerobic Co-digestion of Table Olive Debittering&Washing Effluent, Cattle Manure and Pigmanure in Batch and High Volume Laboratory Anaerobic Digesters: Effect of Temperature. Bioresour. Technol., 102 4995–5003.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Review Articles
Authors

Deniz Dölgen 0000-0002-5888-3032

Mehmet Necdet Alpaslan 0000-0003-1895-7479

Publication Date December 25, 2020
Submission Date July 27, 2020
Acceptance Date October 22, 2020
Published in Issue Year 2020 Volume: 8 Issue: 4

Cite

APA Dölgen, D., & Alpaslan, M. N. (2020). SOFRALIK ZEYTİN ÜRETİMİNDEN KAYNAKLANAN ATIKSULARIN ÖZELLİKLERİ VE ARITMA YÖNTEMLERİ. Mühendislik Bilimleri Ve Tasarım Dergisi, 8(4), 1312-1323. https://doi.org/10.21923/jesd.774689