Research Article
BibTex RIS Cite

EVALUATION OF THE MAJOR AIR POLLUTANTS LEVELS AND ITS INTERACTIONS WITH METEOROLOGICAL PARAMETERS IN ANKARA

Year 2021, Volume: 9 Issue: 4, 1284 - 1295, 20.12.2021
https://doi.org/10.21923/jesd.939724

Abstract

The aim of this study is to examine levels, temporal changes and interactions of major air pollutants with meteorological variables in Ankara, Turkey. The level of air pollutants namely PM10, PM2.5, SO2, NO, NO2, NOX, O3, CO was evaluated monthly, seasonally, and annually during 2019. The statistical relationship between air pollutants and ambient temperature, relative humidity and air pressure was examined and discussed. The pollutants concentrations started to rise in the morning and evening hours (excluding O3) when the traffic was at its peak and was in the highest level between 10:00 -14:00 and 22:00-02:00. It was seen at the lowest values (excluding O3) during daylight hours. A strong positive correlation was reported between PM10 and both PM2.5 and CO. Also, it was positive between NO and CO and NOX. On the other hand, negative correlation was reported between O3 and all other parameters. Moreover, paired comparisons of the selected parameters during the seasons were investigated. A statistically significant difference was found between different paired parameters namely CO/NOX, SO2/NOX and PM2.5/PM10. The results revealed that the changes in the meteorological parameters during the mentioned seasons has a significant impact on the behavior of air pollutant parameters.

References

  • Avdakovic, S., Dedovic, M.M., Dautbasic, N., Dizdarevic. J., 2016. The influence of wind speed, humidity, temperature and air pressure on pollutants concentrations of PM10—Sarajevo case study using wavelet coherence approach. In 2016 XI International Symposium on Telecommunications (IEEE). https://doi.org/10.1109/BIHTEL.2016.7775719.
  • Baran, B., 2021. Air quality index prediction in Besiktas district by artificial neural networks and k nearest neighbors, Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 52-63. DOI: 10.21923/jesd.671836.
  • Bari, M., Kindzierski, W.B., 2015 Fifteen-year trends in criteria air pollutants in oil sands communities of Alberta, Canada. Environ. Int. 74: 200-208. https://doi.org/10.1016/j.envint.2014.10.009.
  • Bozkurt, Z., Üzmez, Ö.Ö., Döğeroğlu, T., Artun, G., Gaga, E.O., 2018. Atmospheric concentrations of SO2, NO2, ozone and VOCs in Düzce, Turkey using passive air samplers: sources, spatial and seasonal variations and health risk estimation. Atmos. Pollut. Res. 9(6): 1146-1156. https://doi.org/10.1016/j.apr.2018.05.001.
  • Brook, R.D., Newby, D.E., Rajagopalan, S., 2017. The global threat of outdoor ambient air pollution to cardiovascular health: time for intervention. JAMA Cardiology 2(4): 353-354. doi:10.1001/jamacardio.2017.0032.
  • Burnett, R., Chen, H., Szyszkowicz, M., Fann, ... Spadaro, J.V., 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. U.S.A. 115(38): 9592-9597. https://doi.org/10.1073/pnas.1803222115.
  • Chandu, K., Dasari, M., 2020. Variation in concentrations of PM2. 5 and PM10 during the four seasons at the port city of Visakhapatnam, Andhra Pradesh, India. Nat. Environ. Pollut. Technol. 19(3): 1187-1193. https://doi.org/10.46488/NEPT.2020.v19i03.032
  • Clarke K, Kwon HO, Choi SD (2014) Fast and reliable source identification of criteria air pollutants in an industrial city. Atmos. Environ. 95(2): 239–248. https://doi.org/10.1016/j.atmosenv.2014.06.040.
  • Çankaya Municipality, 2020. Çankaya Municipality 2020-2024 Strategic Plan. http://www.cankaya.bel.tr/uploads/files/CANKAYA_BELEDIYE_STRATEJIK_PLAN.pdf. Accessed 1 Jan 2021.
  • De Foy, B., 2018. City-level variations in NOx emissions derived from hourly monitoring data in Chicago. Atmos. Environ. 176: 128–139. https://doi.org/10.1016/j.atmosenv.2017.12.028.
  • Dogruparmak, Ş.Ç., Ozbay, B., 2011. Investigating correlations and variations of air pollutant concentrations under conditions of rapid industrialization–Kocaeli (1987–2009). Clean-Soil Air Water 39(7): 597-604. https://doi.org/10.1002/clen.201000478.
  • EU, 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Communities 152:1–43. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF. Accessed 1 Jan 2021.
  • Genc, D.D., Yesilyurt, C., Tuncel, G., 2010. Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environ. Monit. Assess. 166(1): 11-27. https://doi.org/10.1007/s10661-009-0981-y.
  • Ghorani-Azam, A., Riahi-Zanjani, B., Balali-Mood, M., 2016. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci. 21: 65. https://doi.org/10.4103/1735-1995.189646.
  • Jenkin, M.E., Clemitshaw, K.C., 2000. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment 34(16): 2499-2527. https://doi.org/10.1016/S1352-2310(99)00478-1.
  • Kadioglu, Y.K., Ustundag, Z., Solak, A.O., Karabıyıkoğlu, G., 2010. Sources of environmental pollution in Ankara (Turkey): geochemistry and traffic effects-PEDXRF applications. Spectrosc. Lett. 43(3): 247-257. https://doi.org/10.1080/00387010903329391.
  • Li, L., Zhao, Z., Wang, H., Wang, Y., Liu, N., Li, X., Ma, Y., 2020. Concentrations of Four Major Air Pollutants among Ecological Functional Zones in Shenyang, Northeast China, Atmosphere, 11, (1070): 2 – 6. https://doi.org/10.3390/atmos11101070.
  • MEU, 2020. National air qualıty monitoring network. https://sim.csb.gov.tr/. Accessed 23 Jan 2020.
  • Mohan, S., Saranya, P., 2019. Assessment of tropospheric ozone at an industrial site of Chennai megacity. J. Air Waste Manage. Assoc. 69(9), 1079-1095. https://doi.org/10.1080/10962247.2019.1604451.
  • NCACACD, 2020. Annual Reports. https://kiathm.csb.gov.tr/sayfa=31. Accessed 1 Mar 2020.
  • Njoku, P., Ibe, F.C., Alinnor, J., Opara, A., 2016. Seasonal variability of carbon monoxide (CO) in the ambient environment of Imo State, Nigeria. Int. Lett. Nat. Sci. 53: 40-52. https://doi.org/10.18052/www.scipress.com/ILNS.53.40.
  • Rani, B., Singh, U., Chuhan, A.K., Sharma, D., Maheshwari, R., 2011. Photochemical Smog Pollution and Its Mitigation Measures. Journal of Advanced Scientific Research 2(4): 28-33.
  • RAQAM, 2008. Regulation of Air Quality Assessment and Management. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=12188&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5. Accessed 1 Mar 2021.
  • Riga-Karandinos, A.N., Saitanis, C., 2005. Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in Greece. Chemosphere 59(8): 1125-1136. https://doi.org/10.1016/j.chemosphere.2004.11.059.
  • Sari, M.F., Tasdemir, Y., Esen, F., 2019. Major air pollutants in Bursa, Turkey: their levels, temporal changes, interactions, and sources. Environ. Forensics 20(2): 182-195. https://doi.org/10.1080/15275922.2019.1597782.
  • Shaman, J., Kohn, M, 2009. Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences 106(9): 3243-3248. https://doi.org/10.1073/pnas.0806852106.
  • Sorvari, J., Rantala, L.M., Rantala, M.J., Hakkarainen, H., Eeva, T., 2007. Heavy metal pollution disturbs immune response in wild ant populations. J. Environ. Poll. 145(1): 324-328. https://doi.org/10.1016/j.envpol.2006.03.004.
  • TSI, 2020. Population registration system results based on address. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2019-33705. Accessed 1 Mar 2020.
  • Tepe, A.M., Doğan, G., 2019. Türkiye’nin Güney Sahilinde Yer Alan Dört Şehrin Hava Kalitelerinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 585-595. DOI: 10.21923/jesd.535124.
  • Ulutas, K., 2020. The level and temporal changes of major air pollutants in Körfez, Kocaeli. 2nd International Eurasian Conference on Science, Eng. and Technology October 07-09, 2020. https://www.eurasianscientech.org/bildiri%20taslaklar%C4%B1/ProgrammeBook_EurasianSciEnTech_2020.pdf. Accessed 1 Mar 2020.
  • US EPA, 2012. National Ambient Air Quality Standards (NAAQS), Air and Radiation, US EPA. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. https://www.epa.gov/criteria-air-pollutants/naaqs-table. Accessed 1 Nov 2021.
  • US EPA, 2020a. Ground-level ozone pollution. https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics#effects. Accessed 1 Nov 2020.
  • US EPA, 2020b. Particulate Matter (PM) pollution. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM. Accessed 1 Nov 2020.
  • US EPA, 2020c. Sulfur dioxide (SO2) pollution. https://www.epa.gov/so2-pollution/sulfur-dioxide-basics#what%20is%20so2. Accessed 1 Nov 2020.
  • US EPA, 2020d. Carbon monoxide (CO) pollution in outdoor air. https://www.epa.gov/co-pollution. Accessed 1 Nov 2020
  • US EPA, 2020e. Nitrogen dioxide (NO2) pollution. https://www.epa.gov/no2-pollution. Accessed 1 Nov 2020.
  • WHO, 2000. Air quality guidelines for Europe. WHO regional publications, European Series, No. 91. Copenhagen, Denmark. https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf. Accessed 1 Nov 2020.
  • Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, j., Tang, X., 2017. Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol Air Qual. Res., 17(3): 741-751. https://doi.org/10.4209/aaqr.2016.09.0406.
  • Yatin, M., Tuncel, S., Aras, N.K., Olmez, I., Aygun, S., Tuncel, G., 2000. Atmospheric trace elements in Ankara, Turkey: 1. Factors affecting chemical composition of fine particles. Atmos. Environ. 34(8): 1305-1318. https://doi.org/10.1016/S1352-2310(98)00297-0.
  • Yousefian, T., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K., Hassanvand, M., 2020. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017, Scientific Reports 10 (292). https://doi.org/10.1038/s41598-019-56578-6.
  • Yurdakul, S., Ayyıldız, N., Çelik, V. E., İçöz, E., 2019. Süleyman Demirel Üniversitesi seçili dersliklerinin iç çevre kalitesi açısından incelenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 7(4), 811-818. DOI: 10.21923/jesd.541011.

ANKARA’DA BAŞLICA HAVA KİRLETİCİ SEVİYELERİNİN VE METEOROLOJİK PARAMETRELERLE ETKİLEŞİMLERİNİN DEĞERLENDİRİLMESİ

Year 2021, Volume: 9 Issue: 4, 1284 - 1295, 20.12.2021
https://doi.org/10.21923/jesd.939724

Abstract

Bu çalışmanın amacı, Ankara'daki başlıca hava kirleticilerin seviyelerini, zamansal değişimlerini ve meteorolojik değişkenlerle etkileşimlerini incelemektir. Başlıca hava kirleticilerinden olan PM10, PM2.5, SO2, NO, NO2, NOX, O3, CO seviyeleri 2019 yılı boyunca aylık, mevsimsel ve yıllık olarak değerlendirilmiştir. Hava kirleticileri ile ortam sıcaklığı, bağıl nem ve hava basıncı arasındaki istatistiksel ilişki incelenmiş ve tartışılmıştır. Kirletici konsantrasyonları trafiğin en yoğun olduğu sabah ve akşam (O3 hariç) saatlerinde yükselmeye başlamış ve en yüksek düzeyde 10:00 -14: 00 ile 22: 00-02: 00 arasında olmuştur. Gündüz ise en düşük değerler (O3 hariç) görülmüştür. PM10 ile hem PM2.5 hem de CO arasında güçlü bir pozitif korelasyon rapor edilmiştir. Ayrıca NO ve CO ve NOX arasında pozitif korelasyon görülmüştür. Diğer yandan O3 ile diğer tüm parametreler arasında negatif korelasyon rapor edilmiştir. Ayrıca mevsimlerde seçilen parametrelerin ikili karşılaştırmaları da incelenmiştir. CO/NOX, SO2/NOX ve PM2.5/PM10 gibi farklı eşleştirilmiş parametreler arasında istatistiksel olarak anlamlı bir fark bulunmuştur. Sonuçlar, söz konusu mevsimlerde meteorolojik parametrelerdeki değişikliklerin hava kirletici parametrelerinin davranışı üzerinde önemli bir etkiye sahip olduğunu ortaya koymuştur.

References

  • Avdakovic, S., Dedovic, M.M., Dautbasic, N., Dizdarevic. J., 2016. The influence of wind speed, humidity, temperature and air pressure on pollutants concentrations of PM10—Sarajevo case study using wavelet coherence approach. In 2016 XI International Symposium on Telecommunications (IEEE). https://doi.org/10.1109/BIHTEL.2016.7775719.
  • Baran, B., 2021. Air quality index prediction in Besiktas district by artificial neural networks and k nearest neighbors, Mühendislik Bilimleri ve Tasarım Dergisi, 9(1), 52-63. DOI: 10.21923/jesd.671836.
  • Bari, M., Kindzierski, W.B., 2015 Fifteen-year trends in criteria air pollutants in oil sands communities of Alberta, Canada. Environ. Int. 74: 200-208. https://doi.org/10.1016/j.envint.2014.10.009.
  • Bozkurt, Z., Üzmez, Ö.Ö., Döğeroğlu, T., Artun, G., Gaga, E.O., 2018. Atmospheric concentrations of SO2, NO2, ozone and VOCs in Düzce, Turkey using passive air samplers: sources, spatial and seasonal variations and health risk estimation. Atmos. Pollut. Res. 9(6): 1146-1156. https://doi.org/10.1016/j.apr.2018.05.001.
  • Brook, R.D., Newby, D.E., Rajagopalan, S., 2017. The global threat of outdoor ambient air pollution to cardiovascular health: time for intervention. JAMA Cardiology 2(4): 353-354. doi:10.1001/jamacardio.2017.0032.
  • Burnett, R., Chen, H., Szyszkowicz, M., Fann, ... Spadaro, J.V., 2018. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl. Acad. Sci. U.S.A. 115(38): 9592-9597. https://doi.org/10.1073/pnas.1803222115.
  • Chandu, K., Dasari, M., 2020. Variation in concentrations of PM2. 5 and PM10 during the four seasons at the port city of Visakhapatnam, Andhra Pradesh, India. Nat. Environ. Pollut. Technol. 19(3): 1187-1193. https://doi.org/10.46488/NEPT.2020.v19i03.032
  • Clarke K, Kwon HO, Choi SD (2014) Fast and reliable source identification of criteria air pollutants in an industrial city. Atmos. Environ. 95(2): 239–248. https://doi.org/10.1016/j.atmosenv.2014.06.040.
  • Çankaya Municipality, 2020. Çankaya Municipality 2020-2024 Strategic Plan. http://www.cankaya.bel.tr/uploads/files/CANKAYA_BELEDIYE_STRATEJIK_PLAN.pdf. Accessed 1 Jan 2021.
  • De Foy, B., 2018. City-level variations in NOx emissions derived from hourly monitoring data in Chicago. Atmos. Environ. 176: 128–139. https://doi.org/10.1016/j.atmosenv.2017.12.028.
  • Dogruparmak, Ş.Ç., Ozbay, B., 2011. Investigating correlations and variations of air pollutant concentrations under conditions of rapid industrialization–Kocaeli (1987–2009). Clean-Soil Air Water 39(7): 597-604. https://doi.org/10.1002/clen.201000478.
  • EU, 2008. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Official Journal of the European Communities 152:1–43. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF. Accessed 1 Jan 2021.
  • Genc, D.D., Yesilyurt, C., Tuncel, G., 2010. Air pollution forecasting in Ankara, Turkey using air pollution index and its relation to assimilative capacity of the atmosphere. Environ. Monit. Assess. 166(1): 11-27. https://doi.org/10.1007/s10661-009-0981-y.
  • Ghorani-Azam, A., Riahi-Zanjani, B., Balali-Mood, M., 2016. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci. 21: 65. https://doi.org/10.4103/1735-1995.189646.
  • Jenkin, M.E., Clemitshaw, K.C., 2000. Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment 34(16): 2499-2527. https://doi.org/10.1016/S1352-2310(99)00478-1.
  • Kadioglu, Y.K., Ustundag, Z., Solak, A.O., Karabıyıkoğlu, G., 2010. Sources of environmental pollution in Ankara (Turkey): geochemistry and traffic effects-PEDXRF applications. Spectrosc. Lett. 43(3): 247-257. https://doi.org/10.1080/00387010903329391.
  • Li, L., Zhao, Z., Wang, H., Wang, Y., Liu, N., Li, X., Ma, Y., 2020. Concentrations of Four Major Air Pollutants among Ecological Functional Zones in Shenyang, Northeast China, Atmosphere, 11, (1070): 2 – 6. https://doi.org/10.3390/atmos11101070.
  • MEU, 2020. National air qualıty monitoring network. https://sim.csb.gov.tr/. Accessed 23 Jan 2020.
  • Mohan, S., Saranya, P., 2019. Assessment of tropospheric ozone at an industrial site of Chennai megacity. J. Air Waste Manage. Assoc. 69(9), 1079-1095. https://doi.org/10.1080/10962247.2019.1604451.
  • NCACACD, 2020. Annual Reports. https://kiathm.csb.gov.tr/sayfa=31. Accessed 1 Mar 2020.
  • Njoku, P., Ibe, F.C., Alinnor, J., Opara, A., 2016. Seasonal variability of carbon monoxide (CO) in the ambient environment of Imo State, Nigeria. Int. Lett. Nat. Sci. 53: 40-52. https://doi.org/10.18052/www.scipress.com/ILNS.53.40.
  • Rani, B., Singh, U., Chuhan, A.K., Sharma, D., Maheshwari, R., 2011. Photochemical Smog Pollution and Its Mitigation Measures. Journal of Advanced Scientific Research 2(4): 28-33.
  • RAQAM, 2008. Regulation of Air Quality Assessment and Management. https://www.mevzuat.gov.tr/File/GeneratePdf?mevzuatNo=12188&mevzuatTur=KurumVeKurulusYonetmeligi&mevzuatTertip=5. Accessed 1 Mar 2021.
  • Riga-Karandinos, A.N., Saitanis, C., 2005. Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in Greece. Chemosphere 59(8): 1125-1136. https://doi.org/10.1016/j.chemosphere.2004.11.059.
  • Sari, M.F., Tasdemir, Y., Esen, F., 2019. Major air pollutants in Bursa, Turkey: their levels, temporal changes, interactions, and sources. Environ. Forensics 20(2): 182-195. https://doi.org/10.1080/15275922.2019.1597782.
  • Shaman, J., Kohn, M, 2009. Absolute humidity modulates influenza survival, transmission, and seasonality. Proceedings of the National Academy of Sciences 106(9): 3243-3248. https://doi.org/10.1073/pnas.0806852106.
  • Sorvari, J., Rantala, L.M., Rantala, M.J., Hakkarainen, H., Eeva, T., 2007. Heavy metal pollution disturbs immune response in wild ant populations. J. Environ. Poll. 145(1): 324-328. https://doi.org/10.1016/j.envpol.2006.03.004.
  • TSI, 2020. Population registration system results based on address. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2019-33705. Accessed 1 Mar 2020.
  • Tepe, A.M., Doğan, G., 2019. Türkiye’nin Güney Sahilinde Yer Alan Dört Şehrin Hava Kalitelerinin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 585-595. DOI: 10.21923/jesd.535124.
  • Ulutas, K., 2020. The level and temporal changes of major air pollutants in Körfez, Kocaeli. 2nd International Eurasian Conference on Science, Eng. and Technology October 07-09, 2020. https://www.eurasianscientech.org/bildiri%20taslaklar%C4%B1/ProgrammeBook_EurasianSciEnTech_2020.pdf. Accessed 1 Mar 2020.
  • US EPA, 2012. National Ambient Air Quality Standards (NAAQS), Air and Radiation, US EPA. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards. https://www.epa.gov/criteria-air-pollutants/naaqs-table. Accessed 1 Nov 2021.
  • US EPA, 2020a. Ground-level ozone pollution. https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics#effects. Accessed 1 Nov 2020.
  • US EPA, 2020b. Particulate Matter (PM) pollution. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM. Accessed 1 Nov 2020.
  • US EPA, 2020c. Sulfur dioxide (SO2) pollution. https://www.epa.gov/so2-pollution/sulfur-dioxide-basics#what%20is%20so2. Accessed 1 Nov 2020.
  • US EPA, 2020d. Carbon monoxide (CO) pollution in outdoor air. https://www.epa.gov/co-pollution. Accessed 1 Nov 2020
  • US EPA, 2020e. Nitrogen dioxide (NO2) pollution. https://www.epa.gov/no2-pollution. Accessed 1 Nov 2020.
  • WHO, 2000. Air quality guidelines for Europe. WHO regional publications, European Series, No. 91. Copenhagen, Denmark. https://www.euro.who.int/__data/assets/pdf_file/0005/74732/E71922.pdf. Accessed 1 Nov 2020.
  • Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, j., Tang, X., 2017. Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol Air Qual. Res., 17(3): 741-751. https://doi.org/10.4209/aaqr.2016.09.0406.
  • Yatin, M., Tuncel, S., Aras, N.K., Olmez, I., Aygun, S., Tuncel, G., 2000. Atmospheric trace elements in Ankara, Turkey: 1. Factors affecting chemical composition of fine particles. Atmos. Environ. 34(8): 1305-1318. https://doi.org/10.1016/S1352-2310(98)00297-0.
  • Yousefian, T., Faridi, S., Azimi, F., Aghaei, M., Shamsipour, M., Yaghmaeian, K., Hassanvand, M., 2020. Temporal variations of ambient air pollutants and meteorological influences on their concentrations in Tehran during 2012–2017, Scientific Reports 10 (292). https://doi.org/10.1038/s41598-019-56578-6.
  • Yurdakul, S., Ayyıldız, N., Çelik, V. E., İçöz, E., 2019. Süleyman Demirel Üniversitesi seçili dersliklerinin iç çevre kalitesi açısından incelenmesi, Mühendislik Bilimleri ve Tasarım Dergisi, 7(4), 811-818. DOI: 10.21923/jesd.541011.
There are 41 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

Kadir Ulutaş 0000-0002-2931-3559

Sohaib K M Abujayyab 0000-0002-6692-3567

Salem Abu Amr This is me 0000-0003-0589-1490

Publication Date December 20, 2021
Submission Date May 20, 2021
Acceptance Date July 2, 2021
Published in Issue Year 2021 Volume: 9 Issue: 4

Cite

APA Ulutaş, K., Abujayyab, S. K. M., & Abu Amr, S. (2021). EVALUATION OF THE MAJOR AIR POLLUTANTS LEVELS AND ITS INTERACTIONS WITH METEOROLOGICAL PARAMETERS IN ANKARA. Mühendislik Bilimleri Ve Tasarım Dergisi, 9(4), 1284-1295. https://doi.org/10.21923/jesd.939724