VEKTÖR KONTROLLÜ SÜRÜCÜLER İÇİN ASENKRON MOTOR EŞDEĞER DEVRE PARAMETRELERİNİN ÜRETİCİ VERİ FÖYLERİNDEN KESTİRİLMESİ
Year 2021,
Volume: 9 Issue: 4, 1372 - 1385, 20.12.2021
Mehmet Onur Gülbahçe
,
Muhammed Emin Karaaslan
Abstract
Son yıllarda meydana gelen endüstriyel gelişmeler gerek endüstriyel gerekse ev tipi uygulamalarda kullanılan asenkron motorların geniş bir hız aralığında kontrol edilebilmesini zorunlu kılmıştır. Vektör kontrolü algoritmaları sayesinde hız ve moment kontrolünün geniş aralıkta yüksek başarımlı bir şekilde yapılabilmesi için asenkron motorun eşdeğer devre parametrelerinin yüksek doğrulukla bilinmesi gerekir. Bu çalışmada sadece üreticilerin veri föylerinde paylaşmış olduğu kısıtlı bilgiler ile asenkron motorun eşdeğer devre parametrelerinin tahmini gerçekleştirilmiştir. Tahmin yöntemi asenkron motorun eşdeğer devresinden türetilen doğrusal olmayan denklemlerin Newton-Raphson yöntemi ile çözülmesi ilkesine dayanmaktadır. Önerilen denklem sistemi ve çözüm algoritması 20 farklı asenkron motor için test edilmiş ve deneysel olarak elde edilen eşdeğer devre parametreleri ile karşılaştırmalı olarak sunulmuştur. Dahası seçilen 4 farklı motor için deneysel olarak elde edilen hız-moment karakteristiği ve kestirilen parametreler ile hesaplanan hız-moment karakteristiği verilerek önerilen algoritmanın başarımı irdelenmiştir.
References
- Abdelaziz, M. M., & El-Saadany, E. F. (2013, July). Estimation of induction motor single-cage model parameters from manufacturer data. In 2013 IEEE Power & Energy Society General Meeting (pp. 1-5). IEEE.
- Akram, S., & Ann, Q. U. (2015). Newton raphson method. International Journal of Scientific & Engineering Research, 6(7), 1748-1752.
- Al-Jufout, S. A., Al-Rousan, W. H., & Wang, C. (2018). Optimization of induction motor equivalent circuit parameter estimation based on manufacturer’s data. Energies, 11(7), 1792.
- Alonge, F., D'Ippolito, F., Ferrante, G., & Raimondi, F. M. (1998). Parameter identification of induction motor model using genetic algorithms. IEE Proceedings-Control Theory and Applications, 145(6), 587-593.
- Amaral, G. F. V., Baccarini, J. M. R., Coelho, F. C. R., & Baccarini, L. M. R. (2020). A High Precision Method for Induction Machine Parameters Estimation from Manufacturer Data. IEEE Transactions on Energy Conversion.
- Arslan, M. (2010). Diferansiyel evrim algoritması yardımıyla asenkron motor parametrelerinin belirlenmesi. Yüksek Lisans Tezi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
- Aydeniz, M. G. (2005). Asenkron motorların hız algılayıcısız kontrolünde yeni bir algoritmanın geliştirilmesi ve uygulaması. Doktora Tezi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
- Bajrektarevic, Edina, "Parameter identification of induction motor using a genetic algorithm" (2002). Graduate Theses, Dissertations, and Problem Reports. 1217.
- Bingöl, O. Üç-Seviyeli Evirici ile Bir Asenkron Motorun Bulanık Mantık Tabanlı Vektör Kontrolü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 452-459.
- Cirrincione, M., & Pucci, M. (2002, July). Experimental verification of a technique for the real-time identification of induction motors based on the recursive least-squares. In 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623) (pp. 326-334). IEEE.
- Çanakoğlu, A. İ., YETGİN, A. G., Temurtaş, H., & Turan, M. (2014). Induction motor parameter estimation using metaheuristic methods. Turkish Journal of Electrical Engineering & Computer Sciences, 22(5), 1177-1192.
- Çukur, R. (2015). Vektör Denetim Yönteminde İki Farklı Hız Gözlemcisinin Karşılaştırılması Ve Motor Parametrelerindeki Değişimlerin Denetim Performansına Etkisi. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
- Diaz, A., Saltares, R., Rodriguez, C., Nunez, R. F., Ortiz-Rivera, E. I., & Gonzalez-Llorente, J. (2009, May). Induction motor equivalent circuit for dynamic simulation. In 2009 IEEE International Electric Machines and Drives Conference (pp. 858-863). IEEE.
- Fan, M., Chai, J., & Sun, X. (2014, October). Induction motor parameter identification based on T-model equivalent circuit. In 2014 17th International Conference on Electrical Machines and Systems (ICEMS) (pp. 2535-2539). IEEE.
- Gezer, A., Gülbahçe, M. O., & Kocabas, D. A. (2018). Generalised Model of Multiphase Tesla’s Egg of Columbus and Practical Analysis of 3-Phase Design. Electrica, 18(2), 151-158.
- Guasch-Pesquer, L., Youb, L., Jaramillo-Matta, A. A., González-Molina, F., & Barrado-Rodrigo, J. A. (2015, September). Parameters calculation of single-and double-cage models for induction motors from manufacturer data. In 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION) (pp. 237-242). IEEE.
- Haque, M. H. (2008). Determination of NEMA design induction motor parameters from manufacturer data. IEEE transactions on Energy conversion, 23(4), 997-1004.
- Kaygısız, F. (2008). Asenkron Makinaların Matlab’da Tasarımı ve Analizi. Yüksek Lisans Tezi. Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü.
- Lee, K., Frank, S., Sen, P. K., Polese, L. G., Alahmad, M., & Waters, C. (2012, September). Estimation of induction motor equivalent circuit parameters from nameplate data. In 2012 North American Power Symposium (NAPS) (pp. 1-6). IEEE.
- Lima, S. C., Wengerkievicz, C. A., Batistela, N. J., Sadowski, N., da Silva, P. A., & Beltrame, A. Y. (2017, November). Induction motor parameter estimation from manufacturer data using genetic algorithms and heuristic relationships. In 2017 Brazilian Power Electronics Conference (COBEP) (pp. 1-6). IEEE.
- Mohammadi, H. R., & Akhavan, A. (2014). Parameter estimation of three-phase induction motor using hybrid of genetic algorithm and particle swarm optimization. Journal of Engineering, 2014.
- Novotny, D. W., & Lipo, T. A. (1996). Vector control and dynamics of AC drives (Vol. 41). Oxford university press.
- Özköse, E. (2019). Newton-Raphson yöntemi ile rüzgar santrali için en iyilenmiş şebeke entegrasyonu. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi.
- Özyurt, Ç. H. (2005). Parameter and speed estimation on induction motors from manufactures data and measurements / [M.S. - Master of Science]. Middle East Technical University.
- Pedra, J. (2008). On the determination of induction motor parameters from manufacturer data for electromagnetic transient programs. IEEE Transactions on Power Systems, 23(4), 1709-1718.
- Stephan, J., Bodson, M., & Chiasson, J. (1994). Real-time estimation of the parameters and fluxes of induction motors. IEEE Transactions on industry applications, 30(3), 746-759.
- Susanto, J., & Islam, S. (2013, October). Estimation of induction motor parameters using hybrid algorithms for power system dynamic studies. In 2013 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1-6). IEEE.
- Tang, J., Yang, Y., Blaabjerg, F., Chen, J., Diao, L., & Liu, Z. (2018). Parameter identification of inverter-fed induction motors: A Review. Energies, 11(9), 2194.
- Ukil, A., Bloch, R., & Andenna, A. (2011). Estimation of induction motor operating power factor from measured current and manufacturer data. IEEE transactions on energy conversion, 26(2), 699-706.
- Ursem, R. K., & Vadstrup, P. (2003, December). Parameter identification of induction motors using differential evolution. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 2, pp. 790-796). IEEE.
- Zorlu, S., Mergen, F. (2000) Elektrik Makineleri 2 Asenkron Makineler, Birsen Yayınevi
- Wengerkievicz, C. A., Elias, R. D. A., Batistela, N. J., Sadowski, N., Kuo-Peng, P., Lima, S. C., ... & Beltrame, A. Y. (2017). Estimation of three-phase induction motor equivalent circuit parameters from manufacturer catalog data. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(1), 90-107.
- Zheng, J., Wang, Y., Qin, X., & Zhang, X. (2008). An offline parameter identification method of induction motor. In 2008 7th World Congress on Intelligent Control and Automation.
ESTIMATION OF INDUCTION MOTOR EQUIVALENT CIRCUIT PARAMETERS FOR VECTOR CONTROLLED DRIVES FROM MANUFACTURER DATASHEET
Year 2021,
Volume: 9 Issue: 4, 1372 - 1385, 20.12.2021
Mehmet Onur Gülbahçe
,
Muhammed Emin Karaaslan
Abstract
In recent years, industrial developments have made it necessary to control induction motors used in both industrial and household applications in a wide-speed range. Thanks to vector control algorithms, in order to control the torque in a wide speed range operations with high performance, the equivalent circuit parameters of induction motor have to be known precisely. In this study, the estimation of the equivalent circuit parameters of the induction motor is implemented only with the limited information shared by the manufacturer’s datasheets. The estimation method is based on the principle of solving nonlinear equations derived from the equivalent circuit of an induction motor by Newton-Raphson method. The proposed equation set and solution algorithm have been tested for 20 different induction motors and presented in comparison with the experimentally obtained equivalent circuit parameters. Moreover, the speed-torque characteristics obtained experimentally and calculated from estimated equivalent circuit parameters for 4 different selected motors are compared and the performance of the proposed algorithm is examined.
References
- Abdelaziz, M. M., & El-Saadany, E. F. (2013, July). Estimation of induction motor single-cage model parameters from manufacturer data. In 2013 IEEE Power & Energy Society General Meeting (pp. 1-5). IEEE.
- Akram, S., & Ann, Q. U. (2015). Newton raphson method. International Journal of Scientific & Engineering Research, 6(7), 1748-1752.
- Al-Jufout, S. A., Al-Rousan, W. H., & Wang, C. (2018). Optimization of induction motor equivalent circuit parameter estimation based on manufacturer’s data. Energies, 11(7), 1792.
- Alonge, F., D'Ippolito, F., Ferrante, G., & Raimondi, F. M. (1998). Parameter identification of induction motor model using genetic algorithms. IEE Proceedings-Control Theory and Applications, 145(6), 587-593.
- Amaral, G. F. V., Baccarini, J. M. R., Coelho, F. C. R., & Baccarini, L. M. R. (2020). A High Precision Method for Induction Machine Parameters Estimation from Manufacturer Data. IEEE Transactions on Energy Conversion.
- Arslan, M. (2010). Diferansiyel evrim algoritması yardımıyla asenkron motor parametrelerinin belirlenmesi. Yüksek Lisans Tezi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü.
- Aydeniz, M. G. (2005). Asenkron motorların hız algılayıcısız kontrolünde yeni bir algoritmanın geliştirilmesi ve uygulaması. Doktora Tezi. Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
- Bajrektarevic, Edina, "Parameter identification of induction motor using a genetic algorithm" (2002). Graduate Theses, Dissertations, and Problem Reports. 1217.
- Bingöl, O. Üç-Seviyeli Evirici ile Bir Asenkron Motorun Bulanık Mantık Tabanlı Vektör Kontrolü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(3), 452-459.
- Cirrincione, M., & Pucci, M. (2002, July). Experimental verification of a technique for the real-time identification of induction motors based on the recursive least-squares. In 7th International Workshop on Advanced Motion Control. Proceedings (Cat. No. 02TH8623) (pp. 326-334). IEEE.
- Çanakoğlu, A. İ., YETGİN, A. G., Temurtaş, H., & Turan, M. (2014). Induction motor parameter estimation using metaheuristic methods. Turkish Journal of Electrical Engineering & Computer Sciences, 22(5), 1177-1192.
- Çukur, R. (2015). Vektör Denetim Yönteminde İki Farklı Hız Gözlemcisinin Karşılaştırılması Ve Motor Parametrelerindeki Değişimlerin Denetim Performansına Etkisi. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü.
- Diaz, A., Saltares, R., Rodriguez, C., Nunez, R. F., Ortiz-Rivera, E. I., & Gonzalez-Llorente, J. (2009, May). Induction motor equivalent circuit for dynamic simulation. In 2009 IEEE International Electric Machines and Drives Conference (pp. 858-863). IEEE.
- Fan, M., Chai, J., & Sun, X. (2014, October). Induction motor parameter identification based on T-model equivalent circuit. In 2014 17th International Conference on Electrical Machines and Systems (ICEMS) (pp. 2535-2539). IEEE.
- Gezer, A., Gülbahçe, M. O., & Kocabas, D. A. (2018). Generalised Model of Multiphase Tesla’s Egg of Columbus and Practical Analysis of 3-Phase Design. Electrica, 18(2), 151-158.
- Guasch-Pesquer, L., Youb, L., Jaramillo-Matta, A. A., González-Molina, F., & Barrado-Rodrigo, J. A. (2015, September). Parameters calculation of single-and double-cage models for induction motors from manufacturer data. In 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION) (pp. 237-242). IEEE.
- Haque, M. H. (2008). Determination of NEMA design induction motor parameters from manufacturer data. IEEE transactions on Energy conversion, 23(4), 997-1004.
- Kaygısız, F. (2008). Asenkron Makinaların Matlab’da Tasarımı ve Analizi. Yüksek Lisans Tezi. Dumlupınar Üniversitesi, Fen Bilimleri Enstitüsü.
- Lee, K., Frank, S., Sen, P. K., Polese, L. G., Alahmad, M., & Waters, C. (2012, September). Estimation of induction motor equivalent circuit parameters from nameplate data. In 2012 North American Power Symposium (NAPS) (pp. 1-6). IEEE.
- Lima, S. C., Wengerkievicz, C. A., Batistela, N. J., Sadowski, N., da Silva, P. A., & Beltrame, A. Y. (2017, November). Induction motor parameter estimation from manufacturer data using genetic algorithms and heuristic relationships. In 2017 Brazilian Power Electronics Conference (COBEP) (pp. 1-6). IEEE.
- Mohammadi, H. R., & Akhavan, A. (2014). Parameter estimation of three-phase induction motor using hybrid of genetic algorithm and particle swarm optimization. Journal of Engineering, 2014.
- Novotny, D. W., & Lipo, T. A. (1996). Vector control and dynamics of AC drives (Vol. 41). Oxford university press.
- Özköse, E. (2019). Newton-Raphson yöntemi ile rüzgar santrali için en iyilenmiş şebeke entegrasyonu. Yüksek Lisans Tezi. İstanbul Teknik Üniversitesi.
- Özyurt, Ç. H. (2005). Parameter and speed estimation on induction motors from manufactures data and measurements / [M.S. - Master of Science]. Middle East Technical University.
- Pedra, J. (2008). On the determination of induction motor parameters from manufacturer data for electromagnetic transient programs. IEEE Transactions on Power Systems, 23(4), 1709-1718.
- Stephan, J., Bodson, M., & Chiasson, J. (1994). Real-time estimation of the parameters and fluxes of induction motors. IEEE Transactions on industry applications, 30(3), 746-759.
- Susanto, J., & Islam, S. (2013, October). Estimation of induction motor parameters using hybrid algorithms for power system dynamic studies. In 2013 Australasian Universities Power Engineering Conference (AUPEC) (pp. 1-6). IEEE.
- Tang, J., Yang, Y., Blaabjerg, F., Chen, J., Diao, L., & Liu, Z. (2018). Parameter identification of inverter-fed induction motors: A Review. Energies, 11(9), 2194.
- Ukil, A., Bloch, R., & Andenna, A. (2011). Estimation of induction motor operating power factor from measured current and manufacturer data. IEEE transactions on energy conversion, 26(2), 699-706.
- Ursem, R. K., & Vadstrup, P. (2003, December). Parameter identification of induction motors using differential evolution. In The 2003 Congress on Evolutionary Computation, 2003. CEC'03. (Vol. 2, pp. 790-796). IEEE.
- Zorlu, S., Mergen, F. (2000) Elektrik Makineleri 2 Asenkron Makineler, Birsen Yayınevi
- Wengerkievicz, C. A., Elias, R. D. A., Batistela, N. J., Sadowski, N., Kuo-Peng, P., Lima, S. C., ... & Beltrame, A. Y. (2017). Estimation of three-phase induction motor equivalent circuit parameters from manufacturer catalog data. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16(1), 90-107.
- Zheng, J., Wang, Y., Qin, X., & Zhang, X. (2008). An offline parameter identification method of induction motor. In 2008 7th World Congress on Intelligent Control and Automation.